1. Mandelbro, B., The Fractal Geometry of Nature, W. H. Freeman, 1983.
2. Vicsek, T., "Fractal models for diffusion controlled aggregation," J. Phys. A: Math. Gen., Vol. 16, No. 17, 1983.
doi:10.1088/0305-4470/16/17/003 Google Scholar
3. Wagner, G. C., J. T. Colvin, J. P. Allen, and H. J. Stapleton, "Fractal models of protein structure, dynamics and magnetic relaxation," J. Am. Chem. Soc., Vol. 107, No. 20, 5589-5594, 1985.
doi:10.1021/ja00306a001 Google Scholar
4. Stillinger, F. H., "Axiomatic basis for spaces with noninteger dimension," J. Math. Phys., Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395 Google Scholar
5. Bollini, C. G. and J. J. Giambiagi, "Dimensional renormalization: The number of dimensions as a regularizing parameter," Nuovo Cimento B, Vol. 12, 20-26, 1972. Google Scholar
6. Baleanu, D. and S. Muslih, "Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives," Phys. Scripta, Vol. 72, No. 23, 119-121, 2005.
doi:10.1238/Physica.Regular.072a00119 Google Scholar
7. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Phys. Lett. A, Vol. 21, No. 20, 1587-1600, 2006.
doi:10.1142/S0217732306020974 Google Scholar
8. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer-dimensional space," J. Phys. A, Vol. 37, 6987-7003, 2004.
doi:10.1088/0305-4470/37/27/009 Google Scholar
9. Tarasov, V. E., "Continuous medium model for fractal media," Physics Letters A, Vol. 336, No. 2-3, 167-174, 2005.
doi:10.1016/j.physleta.2005.01.024 Google Scholar
10. Martin, O.-S., "Electromagnetism on anisotropic fractals,", 2011,Eprint arXiv: 1106.1491. Google Scholar
11. Muslih, S. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001 Google Scholar
12. Baleanu, D. and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058 Google Scholar
13. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetic Research, Vol. 114, 255-269, 2011. Google Scholar
14. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010. Google Scholar
16. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the cylindrical wave equation for electromagnetic field in fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011. Google Scholar
17. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of spherical wave in D-dimensional fractional space," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1481-1491, 2011. Google Scholar
18. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "Electromagnetic fields and waves in fractional dimensional space," Springer Briefs in Applied Sciences and Technology, XII, 76, Springer, Germany, Jan. 28, 2012. Google Scholar
19. Mughal, M. J. and M. Zubair, "Fractional space solutions of antenna radiation problems: An application to Hertzian dipole," 2011 IEEE 19th Conference on Signal Processing and Communications Applications (SIU), 62-65, Apr. 20-22, 2011, doi:10.1109/SIU.2011.5929587. Google Scholar
20. Hira, A., M. Zubair, and M. J. Mughal, "Reflection and transmission coefficients at dielectric-fractional interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012. Google Scholar
21. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.