Search Results(13668)

2009-04-21
PIER M
Vol. 7, 29-39
Uniform Scattered Fields of the Extended Theory of Boundary Diffraction Wave for PEC Surfaces
Ugur Yalcin
In this paper, the uniform scattered fields from a perfectly conducting (PEC) half plane are studied with the extended theory of the boundary diffraction wave. A new vector potential of the boundary diffraction wave is found by considering the Fermat principle for the PEC surfaces. This vector potential is applied to the Helmholtz-Kirchhoff integral, and the theory of the boundary diffraction wave is extended to the PEC surfaces. The extended theory of the boundary diffraction wave is then applied to the scattering problem for the PEC half plane. The total scattered fields are compared numerically with the exact solution for the same problem. The numerical comparisons given in the paper show that the solution of the extended theory of the boundary diffraction wave is very close to the exact solution.
2009-04-21
PIER B
Vol. 14, 285-309
Design of Ironless Loudspeakers with Ferrofluid Seals: Analytical Study Based on the Coulombian Model
Romain Ravaud and Guy Lemarquand
This paper presents an analytical method based on the coulombian model of a magnet for studying a ferrofluid seal in ironless electrodynamic loudspeakers. Such an approach differs from the ones generally used for studying such geometries because the ferrofluid used is submitted to a magnetic field greater than $1$~T which saturates the ferrofluid. Consequently, its shape and its mechanical properties depend mainly on the magnetic field produced by the permanent magnets that constitute the ironless structure. The motor is constituted of outer stacked ring permanent magnets and the inner moving part is a piston. In addition, one ferrofluid seal is used for centering the moving part and ensuring the airtightness between the loudspeaker faces. The ferrofluid seal also exerts a pull back force on the moving piston. It is noted that this force depends on the lateral shape of the moving piston. Therefore, the piston profile is analytically studied in this paper. A peculiar attention is given to profiles that ensure the axial pull back force to be proportional to the piston displacement. Furthermore, a geometrical method is presented to design the shape of the ferrofluid seal according to the chosen piston profile. It can be noted that such a profile is elliptical in this study. Then, the magnetic energy of the ferrofluid seal is determined with the analytical expression of the magnetic energy density. Such an expression allows us to calculate the axial force created by the ferrofluid seal for a given profile.
2009-04-21
PIER B
Vol. 14, 263-283
Transmission Line Modeling and Numerical Simulasion for the Analysis and Optimum Design of Metamaterial Multilayer Structures
Homayoon Oraizi and Majid Afsahi
The transmission line transfer matrix method (TLTMM) is proposed for the analysis of planar multilayer metamaterial (MTM) structures, where a transmission line model is developed by the transfer matrix method. This novel method may consider any oblique incident plane wave at any angle of incidence, any linear polarization (TE or TM with respect to the incidence plane), circular and elliptical polarizations, any frequency range (microwave or optical frequencies), any number of layers, any combination of common materials (DPS) and MTMs (such as DNG, ENG, MNG), any layer thickness, consideration of any dispersion relations for ε and μ, etc. A unified formulation is presented for both TE and TM polarizations, which lead to the evaluation of the fields and powers inside the layers and half spaces. The objective of the paper is to analyze and design several diverse problems of multilayered structures by TLTMM and a matrix method. The results of computations by TLTMM are agreed with the literature where possible and with the matrix method.
2009-04-20
PIER
Vol. 92, 121-136
A Photon Modeling Method for the Characterization of Indoor Optical Wireless Communication
Haeng-Seon Lee
In this paper, an analysis method for optical wave propagation based on photon model is presented for the characterization of optical wireless communication environment. In contrast to radio waves, optical waves have very short wavelengths, so that material properties become important and often cause diffuse reflections. Channel models including diffuse reflections and absorption effects due to material surface textures make conventional electromagnetic wave analysis methods based on ray tracing consume enormous time. To overcome these problems, an analysis method using photon model is presented that approximates light intensity by density of photons. The photon model also ensures that simulation time is within a predictable limit and the accuracy is proportional to the number of total photons used in the simulation.
2009-04-20
PIER C
Vol. 7, 111-123
Analysis and Design of a Compact Multi-Layer Ultra Wide Band Filter
Durairaj Packiaraj , Kalarickaparambil Vinoy and Ajit Kalghatgi
This paper presents analysis and design of a compact ultra wide band (UWB) filter using three parallel folded coupled lines in a defected ground structure in multi-layer structure. Defected ground has been incorporated under the coupled lines of the filter to improve the coupling over a wide bandwidth. The closed form expressions for even and odd mode impedances for the coupled lines with defected ground have been obtained to design a filter of desired bandwidth with the proposed structure. Based on circuit models, an UWB filter for 3.1-10.6 GHz has been analyzed and the results have been compared using full wave simulations. Analytical results are satisfactorily matching with simulations. Filter exhibits a constant group delay of ±0.08 ns in the pass band. Size of the filter is 6.2 mm×3.4 mm×2.8 mm.
2009-04-20
PIER B
Vol. 14, 247-262
VHF-Lb Vest Antenna
Amir Jafargholi , Ahmad Hosseinbeig , Mohammad Emadi , Leyla Farhoudi and Seyed Ahmad Golgoon
In this paper a new simple VHF-LB vest antenna is proposed, simulated, fabricated and tested. The simulation results for various user's positions such as standing, kneeling and prone on the ground are obtained and compared with conventional whip antenna mounted on mobile unit. It is shown that the proposed antenna outperforms the whip antenna in terms of gain and body energy absorption. The measurements results of proposed vest antenna confirm the simulation results.
2009-04-20
PIER B
Vol. 14, 219-245
Investigation on the Electromagnetic Scattering of Plane Wave/Gaussian Beam by Adjacent Multi-Particles
Li-Xin Guo , Yunhua Wang , Rui Wang and Zhen-Sen Wu
Based on the equivalence principle and the reciprocity theorem, the multiple scattering up to $N$th-order by adjacent multi-particles is considered in this study. It is well known that the first-order solution can easily be obtained by calculating the scattered field from isolated targets when illuminated by a plane wave/Gaussian beam. However, due to the difficulty in formulating the couple scattered field, it is very difficult to find an analytical solution for the higher-order of the scattered field with considering the multiple scattering even for multi-canonical geometries, such as spheres, spheroids, and cubes. In order to overcome this problem, in this present work, the higher-order solutions of electromagnetic scattering for multi-particles are derived by employing the technique based on the reciprocity theorem and the equivalence principle. In specific, using the formulas of the composite scattering field obtained in this work, the bi-static scattering of plane wave/Gaussian beam by adjacent multi-spheres is calculated and the results are compared with those obtained from the numerical computations by the Time Domain Integral Equation Method (TDIEM).
2009-04-17
PIER Letters
Vol. 8, 19-24
High Power Electromagnetic Transient Pulse in-Phase Synthesis
Guang-Yan Liu , Lian-Hong Zhang and Hong-Chun Yang
PCSS low jitter trigger can reach 65 ps in the condition of high bias electric under the non-liner mode [1-5]; high power transient pulse can be gained by virtue of it. The high power transient pulse in-phase characteristic and other tenets are verified by testing axial electric field strength and axial energy density, which is energy per area at the antenna main radiation direction. In the experiment, axial electric field strength and energy density of antenna array measured in different conditions indicate that axial electric field strength is proportional to the number of antenna elements and the energy density is proportional to the square of the number of radiation units, which means the transient electromagnetic pulses could synthesize in phase perfectly.
2009-04-17
PIER Letters
Vol. 8, 9-17
Design of High Order Suspended Stripline Bandpass Filter with Miniaturization
Mingchih Chen , Chang-You Jiang , Wei-Qin Xu and Min-Hua Ho
A quasi-lumped design of a suspended stripline (SSL) bandpass filter (BPF) exhibiting high signal selectivity is proposed. In the circuit, transmission zeros were implanted to enhance the stopband signal rejection. A sample BPF having an operation band of 6.77--7.33\,GHz was fabricated and measured for performance verification of the proposed design.
2009-04-17
PIER Letters
Vol. 8, 1-8
Frequency Selective Surfaces with Fractal Four Legged Elements
Jian-Cheng Zhang , Ying-Zeng Yin and Jin-Ping Ma
Frequency selective surfaces (FSSs) with fractal four legged aperture elements are studied. Three different order fractal elements are discussed for comparison. The results show that by using this novel kind of elements, multiband FSSs with miniaturized elements can be achieved. The ratio of the first resonant wavelength to the periodicity can be up to 10.36. Four passbands for normal incidence or two stable passbands for different incident angle and polarizations can be obtained. The FSS is analyzed by the spectral domain approach.
2009-04-17
PIER C
Vol. 7, 95-109
Multiband Handset Antenna Using Slots on the Ground Plane: Considerations to Facilitate the Integration of the Feeding Transmission Line
Cristina Picher , Jaume Anguera , Arnau Cabedo , Carles Puente and Sungtek Kahng
This research consists on a ground plane modification using slots of a PIFA (Planar Inverted F Antenna) handset antenna with the objective to facilitate the integration of the feeding transmission line which connects the antenna with the RF-module. Through this technique it is possible to obtain a multiband antenna while keeping the same antenna geometry, small volume and simplifying the PCB (Printed Circuit Board) design. Numerical simulation using MoM is used to understand the effect of the slots on the groundplane. Several prototypes have been built to validate the present technique.
2009-04-17
PIER M
Vol. 7, 15-28
A Practical Method for Range Migration Compensation in Chirp Radar
Jun Li , Hongming Liu and Zi-Shu He
The echo signal characteristic of a chirp pulse train from a moving target is analyzed. It is pointed out that the range migration is caused by the migration exponential item (MEI) and can be compensated by removing the MEI. On this basis, we proposed a new practical compensation method with little computation burden through shifting control on the matching weight coefficients. The parasitical sidelobes due to the quantization effect can be restrained effectively by storing multi-groups of weight. Simulation results proved the availability of the method.
2009-04-17
PIER M
Vol. 7, 1-13
A Simple Strategy to Detect Changes in through the Wall Imaging
Francesco Soldovieri , Raffaele Solimene and Rocco Pierri
In this paper a simple strategy to detect changes in through-the-wall imaging scenarios is presented. In particular, tomographic reconstructions taken at different instants of time are exploited. This allows to increase the detectability of scatterers whose positions are varied in two different data collections. The feasibility of the technique is demonstrated with both synthetic and experimental data.
2009-04-17
PIER M
Vol. 6, 185-199
Resonant Diffraction from a Grating on a Paramagnetic Layer with Frequency Dispersion
Sergey B. Panin , Elena D. Vinogradova , Anatoly Poyedinchuk and Sergey I. Tarapov
Theoretical results on the plane electromagnetic wave diffraction from a structure as a strip periodic grating on a paramagnetic layer, the permeability of which possesses negative real part in the microwave band, are obtained using analytical regularization based on the solution to the Riemann-Hilbert problem. The effect of the resonant transmission accompanied by extremely high absorption is thoroughly studied across the frequency band of the surface waves of the paramagnetic layer placed in the biasing magnetic field. This effect is caused by the surface waves of the layer excited resonantly by the plane incident wave with the diffraction grating present. The resonant frequency is electronically tuned by the biasing magnetic field.
2009-04-16
PIER
Vol. 92, 103-120
Broadband Measurements of Dielectric Properties of Low-Loss Materials at High Temperatures Using Circular Cavity Method
En Li , Zai-Ping Nie , Gaofeng Guo , Qishao Zhang , Zhongping Li and Fengmei He
We describe a broadband microwave test system that can measure dielectric properties of microwave low-loss materials at high temperatures using circular cavity method. The dielectric constants and loss tangents of samples at different temperatures were calculated from measured shifts of resonant frequencies and unloaded quality factors of the multimode cavity with and without sample. Detailed design and fabrication of the circular cavity capable of working at temperatures up to 1500οC are discussed. The measurement theory and new calculation method of the radius and length of the cavity at different temperatures are presented. The hardware system was built to measure dielectric properties at wide frequency band from 7 to 18 GHz and over a temperature range from room temperature to 1500οC. Measurement results of the dielectric properties of quartz samples are given and show a good agreement with the reference values.
2009-04-16
PIER
Vol. 92, 91-102
Directive EM Radiation of a Line Source in the Presence of a Coated PEMC Circular Cylinder
Shakeel Ahmed and Qaisar Abbas Naqvi
Electromagnetic scattering of a line source from a perfect electromagnetic conductor (PEMC) circular cylinder coated with double positive (DPS) material or double negative (DNG) material is investigated theoretically. The response of the coated PEMC circular cylinder is observed and it is noted that how the results obtained for this configuration differ from those of a coated perfect electric conductor (PEC) circular cylinder. It is assumed that both the PEMC cylinder and the coating layer are infinite along the cylinder axis. The comparison of directivity of coated PEMC cylinder and coated PEC cylinder is presented.
2009-04-15
PIER
Vol. 92, 79-90
Simulation of Scattered EM Fields from Rotating Cylinder Using Passing Center Swing Back Grids Technique in Two Dimensions
Mingtsu Ho
In this paper, a new numerical technique, passing center swing back grids (PCSBG's) for the resolution of the grid distortion difficulty due to the rotational motion of objects is introduced. This proposed swing-back-grids approach alongside of the method of characteristics (MOC) is developed to solve EM scattering problems featured with rotating objects. The feasibility of such combination is apparent from the fact that MOC defines all field quantities in the centroid of the grid cell. The scattered EM fields from a rotating circular cylinder under the excitation of an EM pulse are predicted in two dimensions and the electric field distributions recorded at several time instances are demonstrated. In order to confirm that the cylinder is rotating and scattering EM fields simultaneously, the circular cylinder is uniformly divided into an even number of slices with one perfect reflector and one non-reflector alternatively since a rotating circular cylinder causes no relativistic effects.
2009-04-15
PIER
Vol. 92, 65-77
Knowledge-Based Support Vector Synthesis of the Microstrip Lines
Nurhan Türker Tokan and Filiz Gunes
In this paper, we proposed an efficient knowledge-based Support Vector Regression Machine (SVRM) method and applied it to the synthesis of the transmission lines for the microwave integrated circuits, with the highest possible accuracy using the fewest accurate data. The technique has integrated advanced concepts of SVM and knowledge-based modeling into a powerful and systematic framework. Thus, synthesis model as fast as the coarse models and at the same time as accurate as the fine models is obtained for the RF/Microwave planar transmission lines. The proposed knowledge-based support vector method is demonstrated by a typical worked example of microstrip line. Success of the method and performance of the resulted synthesis model is presented and compared with ANN results.
2009-04-15
PIER Letters
Vol. 7, 193-201
Harmonic Suppression of Parallel Coupled Microstrip Line Bandpass Filter Using CSRR
S. S. Karthikeyan and Rakhesh Singh Kshetrimayum
Bandstop filter (BSF) is first constructed using open stubs and spurline. The stop bandwidth of this conventional structure is further increased by placing a complementary split ring resonator (CSRR) exactly below the 50 Ω microstrip line. By embedding this BSF with a wide rejection band in the input port of the PCML bandpass filter, unwanted passbands of bandpass filter is eliminated. To demonstrate this, we have designed, fabricated and tested a first order Chebyshev bandpass filter centered at 0.9 GHz with 10% fractional bandwidth (FBW). This bandpass filter is cascaded with the newly proposed BSF. Simulation and measured results shows a harmonic rejection upto 5f0 with more than 20 dB rejection level.
2009-04-15
PIER Letters
Vol. 7, 183-191
Measurement of Dielectric Constant of Thin Leaves by Moisture Content at 4mm Band
Selcuk Helhel , Bektas Colak and Sukru Ozen
A complex dielectric constant for poplar and monstera delicious's obtained by Ulaby at 10 GHz has been revised at 4 mm band. A measurement setup operating at 4 mm was established for making comparison between modeled and measured values. Results basically show that their electromagnetic transparency increases by drying as expected. While moisture content increases from 0% to 60%, transmitted power decreases from 95% down to 22%; reflection goes up to 50% and the absorption reaches from 1% to 20% for monstera leaf. A model developed for poplar responds much better than the model revised for monstera leaves.