Vol. 14
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-04-21
Design of Ironless Loudspeakers with Ferrofluid Seals: Analytical Study Based on the Coulombian Model
By
Progress In Electromagnetics Research B, Vol. 14, 285-309, 2009
Abstract
This paper presents an analytical method based on the coulombian model of a magnet for studying a ferrofluid seal in ironless electrodynamic loudspeakers. Such an approach differs from the ones generally used for studying such geometries because the ferrofluid used is submitted to a magnetic field greater than $1$~T which saturates the ferrofluid. Consequently, its shape and its mechanical properties depend mainly on the magnetic field produced by the permanent magnets that constitute the ironless structure. The motor is constituted of outer stacked ring permanent magnets and the inner moving part is a piston. In addition, one ferrofluid seal is used for centering the moving part and ensuring the airtightness between the loudspeaker faces. The ferrofluid seal also exerts a pull back force on the moving piston. It is noted that this force depends on the lateral shape of the moving piston. Therefore, the piston profile is analytically studied in this paper. A peculiar attention is given to profiles that ensure the axial pull back force to be proportional to the piston displacement. Furthermore, a geometrical method is presented to design the shape of the ferrofluid seal according to the chosen piston profile. It can be noted that such a profile is elliptical in this study. Then, the magnetic energy of the ferrofluid seal is determined with the analytical expression of the magnetic energy density. Such an expression allows us to calculate the axial force created by the ferrofluid seal for a given profile.
Citation
Romain Ravaud, and Guy Lemarquand, "Design of Ironless Loudspeakers with Ferrofluid Seals: Analytical Study Based on the Coulombian Model," Progress In Electromagnetics Research B, Vol. 14, 285-309, 2009.
doi:10.2528/PIERB09031904
References

1. Raj, K., B. Moskowitz, and R. Casciari, "Advances in ferrofluid technology," Journal of Magnetism and Magnetic Materials, Vol. 149, No. 1-2, 174-180, 1995.
doi:10.1016/0304-8853(95)00365-7

2. Rosenzweig, R. E., Y. Hiroto, S. Tsuda, and K. Raj, "Study of audio speaker containing ferrofluid," Journal of Physics: Condensed Matter, Vol. 20, No. 20, 2008.

3. Lemarquand, G., "Ironless loudspeakers," IEEE Trans. Magn., Vol. 43, No. 8, 3371-3374, 2007.
doi:10.1109/TMAG.2007.897739

4. Berkouk, M., V. Lemarquand, and G. Lemarquand, "Analytical calculation of ironless loudspeaker motors," IEEE Trans. Magn., Vol. 37, No. 2, 1011-1014, 2001.
doi:10.1109/20.917185

5. Ravaud, R. and G. Lemarquand, "Modelling an ironless loudspeaker by using three-dimensional analytical approaches," Progress In Electromagnetics Research, Vol. 91, 53-68, 2009.
doi:10.2528/PIER09021104

6. Ravaud, R. and G. Lemarquand, "Mechanical properties of a ferrofluid seal: Three-dimensional analytical study based on the coulombian model ," Progress In Electromagnetics Research B, Vol. 13, 385-407, 2009.
doi:10.2528/PIERB09020601

7. Rosensweig, R. E., Ferrohydrodynamics, 1997.

8. Raikher, Y. L., V. I. Stepanov, J. C. Bacri, and R. Perzynski, "Orientational dynamics in magnetic fluids under strong coupling of external and internal relaxations," Journal of Magnetism and Magnetic Materials, Vol. 289, 222-225, 2005.
doi:10.1016/j.jmmm.2004.11.064

9. Babic, S. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008.

10. Babic, S., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3D linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn., Vol. 36, No. 5, 3125-3127, 2000.
doi:10.1109/20.908707

11. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096

12. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets.," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102

13. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet.," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708

14. Ravaud, R. and G. Lemarquand, "Discussion about the magnetic field produced by cylindrical halbach structures," Progress In Electromagnetics Research B, Vol. 13, 275-308, 2009.
doi:10.2528/PIERB09012004

15. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors — An alternative method ," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
doi:10.1109/TMAG.2004.831653

16. Bajkowski, J., J. Nachman, M. Shillor, and M. Sofonea, "A model for a magnetorheological damper," Mathematical and Computer Modelling, Vol. 48, 56-68, 2008.
doi:10.1016/j.mcm.2007.08.014

17. Holm, C. and J. J. Weiss, "The structure of ferrofluids: A status report," Current Opinion in Colloid and Interface Science, Vol. 10, No. 4, 133-140, 2005.
doi:10.1016/j.cocis.2005.07.005

18. Park, G. S. and K. Seo, "New design of the magnetic fluid linear pump to reduce the discontinuities of the pumping forces," IEEE Trans. Magn., Vol. 40, 916-919, 2004.
doi:10.1109/TMAG.2004.824718

19. Tiperi, N., "Overall characteristics of bearings lubricated ferrofluids," ASME J. Lubr. Technol., Vol. 105, 466-475, 1983.

20. Walker, J. and J. Backmaster, "Ferrohydrodynamics thrust bearings," Int. J. Eng. Sci., Vol. 17, 1171-1182, 1979.
doi:10.1016/0020-7225(79)90100-9

21. Ochonski, W., "The attraction of ferrofluid bearings," Mach. Des., Vol. 77, No. 21, 96-102, 2005.

22. Chang, H., C. Chi, and P. Zhao, "A theoretical and experimental study of ferrofluid lubricated four-pocket journal bearing," Journal of Magnetism and Magnetic Materials, Vol. 65, 372-374, 1987.
doi:10.1016/0304-8853(87)90074-6

23. Zhang, Y., "Static characteristics of magnetized journal bearing lubricated with ferrofluids ," ASME J. Tribol., Vol. 113, 533-538, 1991.
doi:10.1115/1.2920656

24. Zhang, Q., S. Chen, S. Winoto, and E. Ong, "Design of highspeed magnetic fluid bearing spindle motor," IEEE Trans. Magn., Vol. 37, No. 4, 2647-2650, 2001.
doi:10.1109/20.951262

25. Osman, T., G. Nada, and Z. Safar, "Static and dynamic characteristics of magnetized journal bearings lubricated with ferrofluid ," Tribology International, Vol. 34, 369-380, 2001.
doi:10.1016/S0301-679X(01)00017-2

26. Meng, Z. and Z. Jibin, "An analysis on the magnetic fluid seal capacity," Journal of Magnetism and Magnetic Materials, Vol. 303, e428-e431, 2006.
doi:10.1016/j.jmmm.2006.01.060

27. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Ironless loudspeakers with ferrofluid seals," Archives of Acoustics , Vol. 33, No. 4, 3-10, 2008.

28. Cunha, F. and H. Couto, "A new boundary integral formulation to describe three-dimensional motions of interfaces between magnetic fluids," Applied Mathematics and Computation, Vol. 199, 70-83, 2008.
doi:10.1016/j.amc.2007.09.035

29. Matthies, G. and U. Tobiska, "Numerical simulation of normalfield instability in the static and dynamic case," Journal of Magnetism and Magnetic Materials, Vol. 289, 346-349, 2005.
doi:10.1016/j.jmmm.2004.11.098

30. Ivanov, A., S. Kantorovich, V. Mendelev, and E. Pyanzina, "Ferrofluid aggregation in chains under the influence of a magnetic field ," Journal of Magnetism and Magnetic Materials, Vol. 300, e206-e209, 2006.
doi:10.1016/j.jmmm.2005.10.081

31. Tarapov, I., "Movement of a magnetizable fluid in lubricating layer of a cylindrical bearing," Magnetohydrodynamics, Vol. 8, No. 4, 444-448, 1972.

32. Miyake, S. and S. Takahashi, "Sliding bearing lubricated with ferromagnetic fluid," ASLE Trans., Vol. 28, 461-466, 1985.

33. Miwa, M., H. Harita, T. Nishigami, R. Kaneko, and H. Unozawa, "Frequency characteristics of stiffness and damping effect of a ferrofluid bearing," Tribology Letter, Vol. 15, No. 2, 97-105, 2003.
doi:10.1023/A:1024448930757