Vol. 6
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-04-17
Resonant Diffraction from a Grating on a Paramagnetic Layer with Frequency Dispersion
By
Progress In Electromagnetics Research M, Vol. 6, 185-199, 2009
Abstract
Theoretical results on the plane electromagnetic wave diffraction from a structure as a strip periodic grating on a paramagnetic layer, the permeability of which possesses negative real part in the microwave band, are obtained using analytical regularization based on the solution to the Riemann-Hilbert problem. The effect of the resonant transmission accompanied by extremely high absorption is thoroughly studied across the frequency band of the surface waves of the paramagnetic layer placed in the biasing magnetic field. This effect is caused by the surface waves of the layer excited resonantly by the plane incident wave with the diffraction grating present. The resonant frequency is electronically tuned by the biasing magnetic field.
Citation
Sergey B. Panin, Elena D. Vinogradova, Anatoly Poyedinchuk, and Sergey I. Tarapov, "Resonant Diffraction from a Grating on a Paramagnetic Layer with Frequency Dispersion," Progress In Electromagnetics Research M, Vol. 6, 185-199, 2009.
doi:10.2528/PIERM09030608
References

1. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188        Google Scholar

2. Pendry, J. B., "Negative refraction," Contemporary Phys., Vol. 45, No. 3, 191-202, 2004.
doi:10.1080/00107510410001667434        Google Scholar

3. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773        Google Scholar

4. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

5. Uehara, M., K. Yashiro, and S. Ohkawa, "Diffraction of plane waves from a strip grating on a ferrite substrate," Proc. Asia Pacific Microwave Conference, 177-180, 1997.
doi:10.1109/APMC.1997.659333        Google Scholar

6. Panin, S. B., P. D. Smith, and A. Y. Poyedinchuk, "Elliptical to linear polarization transformation by a grating on a chiral medium ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1885-1899, 2007.        Google Scholar

7. Panin, S. B. and A. Y. Poyedinchuk, "Electromagnetic wave diffraction by a grating with a chiral layer," Radiophysics and Quantum Electronics, Vol. 45, No. 8, 629-639, 2002.
doi:10.1023/A:1021781015209        Google Scholar

8. Melezhik, P. N., A. Y. Poyedinchuk, Y. A. Tuchkin, and N. P. Yashina, "Periodic surface of materials with single and double negative parameters: Absorption resonances," Proc. Int. Kharkiv Symp. Phys. and Engineering of Microwaves, Millimeter, and Submillimeter Waves, 311-313, MSMW'04, Kharkiv, 2004.        Google Scholar

9. Granet, G., M. Ney, N. Yashina, A. Poyedinchuk, and S. Panin, "Electromagnetic wave diffraction by periodic structures with metamaterials: Surface wave resonance ," Proc. 13th Int. Symp. on Antennas, 8-10, JINA'04, Nice, 2004.        Google Scholar

10. Kusaykin, O. P., P. N. Melezhik, A. Y. Poyedynchuk, and O. S. Troschylo, "Absorbing properties of a negative permittivity layer placed on a reflecting grating," Progress In Electromagnetics Research, Vol. 64, 135-148, 2006.
doi:10.2528/PIER06061601        Google Scholar

11. Poyedinchuk, A. Y., Y. A. Tuchkin, and V. P. Shestopalov, "New numerical-analytical methods in diffraction theory," Mathematical and Computer Modelling, Vol. 32, 1026-1046, 2000.        Google Scholar

12. Panin, S. B., P. D. Smith, Y. A. Tuchkin, E. D. Vinogradova, and S. S. Vinogradov, "Regularization of the Dirichlet problem for Laplace's equation: Surfaces of revolution," Electromagnetics, Vol. 29, No. 1, 53-76, 2009.
doi:10.1080/02726340802529775        Google Scholar

13. Agranovich, Z. S., V. A. Marchenko, and V. P. Shestopalov, "The diffraction of electromagnetic waves from plane metallic lattices," Sov. Phys. Tech. Phys., Vol. 7, 277-286, 1962.        Google Scholar

14. Bloch, F., "Nuclear induction," Phys. Rev., Vol. 70, 460-474, 1946.
doi:10.1103/PhysRev.70.460        Google Scholar

15. Kittel, C., Introduction to Solid State Phys., Wiley & Sons, 1994.

16. Tarapov, S., T. Bagmut, A. Granovsky, V. Derkach, S. Nedukh, A. Plevako, S. Roschenko, and I. Shipkova, "Electron spin resonance properties of magnetic granular GMI-nanostructures in millimetre waveband ," Intern. Journal of Infrared and Millimeter Waves, Vol. 25, No. 11, 1581-1589, 2004.
doi:10.1023/B:IJIM.0000047449.79715.66        Google Scholar

17. Kantorovich, L. V. and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, 1982.

18. Meixner, J., "The behaviour of electromagnetic field at edges," IEEE Trans. on Antennas and Propagation, Vol. 20, 442-446, 1972.
doi:10.1109/TAP.1972.1140243        Google Scholar

19. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, 1965.

20. Mittra, R. and S.W. Lee, Analytical Tech. in the Theory of Guided Waves, The Macmillan Company, 1971.

21. Brovenko, A., P. N. Melezhik, A. Y. Poyedinchuk, N. P. Yashina, and G. Granet, "Surface resonances of metal stripe grating on the plane boundary of metamaterial ," Progress In Electromagnetics Research, Vol. 63, 209-222, 2006.
doi:10.2528/PIER06052401        Google Scholar

22. Poyedinchuk, A. Y., Y. A. Tuchkin, N. P. Yashina, J. Chandezon, and G. Granet, "C-method: Several aspects of spectral theory of gratings," Progress In Electromagnetics Research, Vol. 59, 113-149, 2006.
doi:10.2528/PIER05050901        Google Scholar