Vol. 92
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-04-16
Broadband Measurements of Dielectric Properties of Low-Loss Materials at High Temperatures Using Circular Cavity Method
By
Progress In Electromagnetics Research, Vol. 92, 103-120, 2009
Abstract
We describe a broadband microwave test system that can measure dielectric properties of microwave low-loss materials at high temperatures using circular cavity method. The dielectric constants and loss tangents of samples at different temperatures were calculated from measured shifts of resonant frequencies and unloaded quality factors of the multimode cavity with and without sample. Detailed design and fabrication of the circular cavity capable of working at temperatures up to 1500οC are discussed. The measurement theory and new calculation method of the radius and length of the cavity at different temperatures are presented. The hardware system was built to measure dielectric properties at wide frequency band from 7 to 18 GHz and over a temperature range from room temperature to 1500οC. Measurement results of the dielectric properties of quartz samples are given and show a good agreement with the reference values.
Citation
En Li, Zai-Ping Nie, Gaofeng Guo, Qishao Zhang, Zhongping Li, and Fengmei He, "Broadband Measurements of Dielectric Properties of Low-Loss Materials at High Temperatures Using Circular Cavity Method," Progress In Electromagnetics Research, Vol. 92, 103-120, 2009.
doi:10.2528/PIER09030904
References

1. Mohammadi, F. A. and M. C. E. Yagoub, "Electromagnetic model for microwave components of integrated circuits," Progress In Electromagnetics Research B, Vol. 1, 81-94, 2008.
doi:10.2528/PIERB07101802

2. Hu, J. and R. Xu, "9.5 GHz 16λg delay line using multilayer LTCC," Progress In Electromagnetics Research Letters, Vol. 6, 175-182, 2009.

3. Nie, X. C., Y. B. Gan, N. Yuan, C. F. Wang, and L. W. Li, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 249-264, 2006.
doi:10.1163/156939306775777215

4. Li, Z. and T. J. Cui, "Sandwichstructure waveguides for very highpower generation and transmission using lefthanded materials," Progress In Electromagnetics Research, PIER 69, 101-106, 2007.

5. Karam, M. A., "On the linear spectrum mixing model over discrete random media," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 3, 325-339, 2005.
doi:10.1163/1569393054139688

6. Hasar, U. C., "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, PIER 91, 123-138, 2009.

7. Hauschild, T. and R. K. Ochel, "Measurement of complex permittivity of solids up to 1000οC," Microwave Symposium Digest, 1687-1687, San Francisco, CA, USA, June 17-21, 1996.

8. Varadan, V. V., R. D. Hollinger, D. K. Ghodgaonkar, and V. K. Varadan, "Free-space, broadband measurements of high temperature, complex dielectric properties at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 40, No. 5, 842-846, October 1991.
doi:10.1109/19.106308

9. MacDonald, A., P. Friederich, and R. L. Moore, "Millimeter wave dielectric measurements at elevated temperatures," Antennas and Propagation Society International Symposium, Vol. 3, 1668-1671, London, Ont., Canada, June 24-28, 1991.

10. Gershon, D. L., J. P. Calame, Y. Carmel, T. M. Antonsen, Jr., and R. M. Hutcheon, "Open-ended coaxial probe for high-temperature and broad-band dielectric measurements," IEEE Transactions on Microwave Theory and Technology, Vol. 47, No. 9, 1640-1648, September 1999.
doi:10.1109/22.788604

11. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Material Characterization, John Wiley & Sons, Inc., New York, 2004.

12. Ma, L. X, H. Zhang, and C. X. Zhang, "Analysis on the reflection characteristic of electromagnetic wave incidence in closed nonmagnetized plasma," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1718, 2285-2296, 2008.
doi:10.1163/156939308787543877

13. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

14. ASTM D 2520-01 "Standard test methods for complex permittivity (dielectric constant) of solid electrical insulating materials at microwave frequencies and temperatures to 1650οC,", American National Standard, 2001.

15. Feng, L. and G. Wei, "High temperature automatic dielectric measurement system at Ku band using open resonator technique," High Power Laser and Particle Beams, Vol. 18, No. 8, 1323-1326, August 2006.

16. Baeraky, T. A., "Microwave measurements of dielectric properties of Zinc Oxide at high temperature," Egyptian Journal of Solids, Vol. 30, No. 1, 13-18, 2007.

17. Hutcheon, R. M., M. S. de Jong, P. Lucuta, J. E. McGregor, B. H. Smith, and F. P. Adams, "Measurement of high-temperature RF and microwave properties of selected alumina and ferrites used in accelerators," Particle Accelerator Conference, Vol. 2, 795-797, San Francisco, CA, USA, May 6-9, 1991.

18. Meng, B., J. Booske, and R. Cooper, "A system to measure complex permittivity of low loss ceramics at microwave frequencies and over large temperature ranges," Review of Scientific Instruments, Vol. 66, No. 2, 1068-1071, February 1995.
doi:10.1063/1.1146518

19. Garven, M., J. P. Calame, B. Myers, and D. Lobas, "Variable temperature measurements of the dielectric properties of lossy materials in W-band," 2005 Joint 30th International Conference on Infrared and Millimeter Waves & 13th International Conference on Terahertz Electroni, Vol. 1, 174-175, September 19-23, 2005.

20. Shimizu, T. and Y. Kobayashi, "Millimeter wave measurements of temperature dependence of complex permittivity of GaAs disks by a circular waveguide method," Microwave Symposium Digest, Vol. 3, 2195-2219, Phoenix, AZ, USA, May 20-25, 2001.

21. Li, Y., J. Li, and X. He, "Study on high temperature dielectric properties of magnetic window materials by cavity resonator method," Journal of Infrared and Millimeter Waves, Vol. 23, No. 2, 157-160, April 2004.

22. Tinga, W. and X. Xi, "Design of a new high-temperature dielectrometer system," Journal of Microwave Power and Electromagnetic Energy, Vol. 28, No. 2, 93-103, 1993.

23. Roussy, G., J. M. Thiebaut, F. Ename-Obiang, and E. Marchal, "Microwave broadband permittivity measurement with a multimode helical resonator for studying catalysts," Measurement Science and Technology, Vol. 12, No. 4, 542-547, April 2001.
doi:10.1088/0957-0233/12/4/321

24. Westphal, W. B. and J. Iglesias, "Dielectric measurements on high-temperature materials,", Laboratory for Insulation Research, Massachusetts Institute of Technology Cambridge, AD873038, 1971.

25. Stankovi, Z., B. Milovanovi, and N. Doncov, "Hybrid empiricalneural model of loaded microwave cylindrical cavity," Progress In Electromagnetics Research, PIER 83, 257-277, 2008.

26. Shackelford, J. F. and W. Alexander, CRC Materials and Engineering Handbook, CRC Press, 2001.