Vol. 17
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-27
A Uapo-Based Model for Propagation Prediction in Microcellular Environments
By
Progress In Electromagnetics Research B, Vol. 17, 101-116, 2009
Abstract
A propagation model is presented in this paper for predicting the field strength in microcellular environments. According to the Geometrical Theory of Diffraction, the total field at a given observation point is calculated by summing the Geometrical Optics contributions and the field diffracted by the edges of each structure. The diffraction contributions are here evaluated by means of a Uniform Asymptotic Physical Optics solution to the corresponding canonical problem. Such a solution, expressed in terms of the standard transition function of the Uniform Theory of Diffraction, has resulted to be able to compensate the Geometrical Optics discontinuities at the shadow boundaries. In this framework, the structures are treated as constituted by lossy dielectric materials assumed to be non penetrable. The effectiveness of the here proposed model has been tested in some typical scenarios by means of comparisons with the Finite Difference Time Domain method.
Citation
Gianluca Gennarelli, and Giovanni Riccio, "A Uapo-Based Model for Propagation Prediction in Microcellular Environments," Progress In Electromagnetics Research B, Vol. 17, 101-116, 2009.
doi:10.2528/PIERB09072305
References

1. Tan, S. Y. and H. S. Tan, "UTD propagation model in an urban street scene for microcellular communications," IEEE Trans. Electromagnetic Compat., Vol. 35, 423-428, 1993.
doi:10.1109/15.247854

2. Erceg, V., A. J. Rustako, and R. S. Roman, "Diffraction around corners and its effect on the microcell coverage area in urban and suburban environments at 900 MHz, 2 GHz, and 6 GHz," IEEE Trans. Veh. Technol., Vol. 43, 762-766, 1994.
doi:10.1109/25.312770

3. Schuster, J. and R. Luebbers, "Hybrid SBR/GTD radio propagation model for site-specific predictions in an urban environment," 12th Ann. Rev. of Progress in Applied Computational Electromagnetics, Vol. 1, 84-92, Monterey, CA, 1996.

4. Kanatas, A. G., I. D. Kountouris, G. B. Kostaras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, 185-193, 1997.
doi:10.1109/25.554751

5. Rizk, K., J. F. Wagen, and F. Gardiol, "Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, 508-518, 1997.
doi:10.1109/25.580789

6. Kanatas, A. G. and P. Constantinou, "A propagation prediction tool for urban mobile radio systems," IEEE Trans. Veh. Technol., Vol. 49, 1348-1355, 2000.
doi:10.1109/25.875256

7. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116

8. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

9. Luebbers, R. J., "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. Antennas Propagat., Vol. 32, 70-76, 1984.
doi:10.1109/TAP.1984.1143189

10. Bernardi, P., R. Cicchetti, C. Gennarelli, G. Pelosi, and G. Riccio, "A UAPO solution for the field diffracted by building corners in wireless radio environments," Antennas Wireless Propagat. Lett., Vol. 1, 169-172, 2002.
doi:10.1109/LAWP.2002.807568

11. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, 2000.

12. Senior, T. B. A. and J. L. Volakis, "Approximate boundary conditions in electromagnetics," IEE Electromagnetic Waves Series, London, 1995.

13. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

14. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249