Vol. 36

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Effective Material Property Extraction of a Metamaterial by Taking Boundary Effects into Account at TE/TM Polarized Incidence

By Sung Kim, Edward F. Kuester, Christopher L. Holloway, Aaron D. Scher, and James R. Baker-Jarvis
Progress In Electromagnetics Research B, Vol. 36, 1-33, 2012


In this paper, we present the extraction for effective material parameters for a metamaterial from TE or TM waveguide measurements with generalized sheet transition conditions (GSTCs) used to provide electric and magnetic surface susceptibilities that approximate boundary effects between the metamaterial and air. The retrieval algorithm determines the effective material properties via scattering data obtained from the metamaterial in a waveguide. The effective refractive index is expressed as a function of S-parameters for two samples of different length. The effective wave impedance is given in terms of $S$-parameters and the refractive index, assuming that GSTCs account for the boundary effects. The effective permittivity and permeability can then be determined through the refractive index and wave impedance. By use of S-parameters generated by commercial three-dimensional (3-D) full-wave simulation software our present equations are tested for two cases of metamaterials: magneto-dielectric (εrr) and dielectric (TiO2) particles. We also conduct S-parameter measurements on dielectric cubes with an S-band (WR-284) waveguide to compute the effective material properties. Furthermore, our results are compared to those derived from another retrieval method used in the literature, which does not account for boundary effects.


Sung Kim, Edward F. Kuester, Christopher L. Holloway, Aaron D. Scher, and James R. Baker-Jarvis, "Effective Material Property Extraction of a Metamaterial by Taking Boundary Effects into Account at TE/TM Polarized Incidence," Progress In Electromagnetics Research B, Vol. 36, 1-33, 2012.


    1. Pendry, , J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Cond. Mat., Vol. 10, 4785-4809, 1998.

    2. Pendry, , J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenom-ena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999..

    3. Saadoun, , M. M. I. , N. Engheta, and , "A reciprocal phase shifter using novel pseudochiral or Omega medium," Microwave Opt. Tech. Lett., Vol. 5, No. 4, 184-188, 1992.

    4. Lindell, , I. V., , A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media,, Artech House, Boston, 1994.

    5. Holloway, , C. L., , E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2596-2603, 2003.

    6. Kim, J. , A. Gopinath, and , "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.

    7. Zhao, , Q., , L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," hys. Rev. Lett.,, Vol. 101, 027402, 2008.

    8. Wang, J., S. Qu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Wide-angle polarization-independent planar left-handed metamaterials based on dielectric resonators ," Progress In Electromagnetics Research B, Vol. 12, 243-258, 2009.

    9. Pendry, , J. B., , "Negative refraction makes a perfect lens," Phys Rev. Lett., Vol. 85, 3966-3969, 2000.

    10. Grbic, A. , G. V. Eleftheriades, and , "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett., , Vol. 92, , 117403, , 2004.

    11. Yang, , F., Y. Rahmat-Samii, and , Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, New York, , 2009.

    12. Landy, , N. I., , S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett.,, Vol. 100, 207402, 2008.

    13. Li, , Y., Y. Xie, H. Zhang, Y. Liu, Q. Wen, and W. Ling, "The strong non-reciprocity of metamaterial absorber: Characteristic interpretation and modeling," J. Phys. D. Appl. Phys., Vol. 42, 095408, , 2009.

    14. Wang, , J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.

    15. Engheta, , N., , "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless Propag. Lett., Vol. 1, 10-13, 2002.

    16. Ozgun, O. , M. Kuzuoglu, and , "Utilization of anisotropic metama-terial layers in waveguide miniaturization and transitions," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 11, 754-756, 2007.

    17. Meng, F. Y., , Q. Wu, and J. H. Fu, "Miniaturized rectangular cavity resonator based on anisotropic metamaterials bilayer," Microwave Opt. Tech. Lett.,, Vol. 50, No. 8, 2016-2020, 2008.

    18. Holloway, , C. L., , D. C. Love, E. F. Kuester, A. Salandrino, and N. Engheta, "Sub-wavelength resonators: On the use of metafilms to overcome the lambda/2 size limit," IET Microw. Antennas Propag., Vol. 2, No. 2, 120-129, 2008.

    19. Alµu, , A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag.,, Vol. 55, No. 1, 13-25, 2007.

    20. Bilotti, , F., A. Alu, and L. Vegni, "Design of miniaturized metamaterial patch antennas with mu-negative loading," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1640-1647, 2008.

    21. Smith, , D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coe±cients," Phys. Rev. B, Vol. 65, , 195104, 2002.

    22. Smith, , D. R., , D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, , Vol. 71, , 036617, , 2005.

    23. Chen, , H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optics Express,, Vol. 14, No. 26, 12944-12949, 2006.

    24. Carbonell, , J., , L. J. Rogla, V. E. Boria, and D. Lippens, "Design and experimental verification of backward-wave propagation in periodic waveguide structures," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1527-1533, 2006.

    25. Menzel, , C., , C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving e®ective parameters for metamaterials at oblique incidence," Phys. Rev. B, Vol. 77, 195328, , 2008..

    26. Cohn, , S. B., and ., "Microwave measurements on metallic delay media," Proc. IRE,, Vol. 41, , 1177-1183, , 1953..

    27. Brown, J. a, W. Jackson, and , "The properties of artificial dielectrics at centimetre wavelengths," Proc. IEE,, Vol. 102B, 11-16, 1955.

    28. Scher, , A. D. , E. F. Kuester, and , "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials,, Vol. 3, No. 1, 44-55, 2009..

    29. Pekar, , S. I., , "The theory of electromagnetic waves in a crystal in which excitations are produced," Sov. Phys. JETP, Vol. 6, , 785-796, , 1958.

    30. Silveirinha, , M. G., , C. A. Fernandes, and J. R. Costa, "Additional boundary conditions for a wire medium connected to a metallic surface," New J. Phys., , Vol. 10, , 053011, , 2008.

    31. Silveirinha, M. G., , "Additional boundary conditions for noncon-nected wire media," New J. Phys., , Vol. 11, , 113016, , 2009.

    32. Simovski, , C. R. and S. A. Tretyakov, "Local constitutive pa-rameters of metamaterials from an effective-medium perspective," Phys. Rev. B, Vol. 75, 195111, 2007.

    33. Simovski, , C. R., , "Material parameters of metamaterials (a review)," Opt. Spectr., Vol. 107, No. 5, 766-793, 2009..

    34. Vinogradov, , A. P., A. I. Ignatov, A. M. Merzlikin, S. A. Tretyakov, and C. R. Simovski, "Additional effective medium parameters for composite materials (excess surface currents)," Opt. Express, Vol. 19, No. 7, 6699-6704, 2011.

    35. Kim, , S., , E. F. Kuester, C. L. Holloway, A. D. Aaron, and J. Baker-Jarvis, "Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2226-2240, 2011.

    36. Marks, , R. B. , D. F. Williams, and , "A general waveguide circuit theory," J. Res. Nat. Inst. Stand. Technol., Vol. 97, No. 5, 553-562, 1992.

    37. Huynen, , I., , C. Steukers, and F. Duhamel, "A wideband line-line dielectric method for liquids, soils, and planar substrates," IEEE Trans. Instrum. Meas., , Vol. 50, No. 5, 1343{-1348, 2001.

    38. Carchon, , G. , B. Nauwelaers, and , "Accurate transmission line characterisation on high and low-resistivity substrates," Proc. IEE Microw. Antennas Propag., Vol. 148, No. 5, 285-290, , 2001.

    39. Narita, , K. , T. Kushta, and , "An accurate experimental method for characterizing transmission lines embedded in multilayer printed circuit boards," IEEE Trans. Adv. Packag.,, Vol. 29, No. 1, 114-121, 2006.

    40. Kuester, , E. F., , M. A. Mohamed, M. Picket-May, and C. L. Hol-loway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2641-2651, 2003.

    41. Scher, , A. D. , E. F. Kuester, and , "Boundary effects in the electromagnetic response of a metamaterial in the case of normal incidences," Progress In Electromagnetics Research B, Vol. 14, 341-381, 2009.

    42. Vernon, , R. J. and S. R. Seshadri, "Reflection coefficient and reflected power on a lossy transmission line," Proc. IEEE,, Vol. 57, 101-102, 1969.

    43. Mohamed, , M. A., , E. F. Kuester, M. Piket-May, and C. L. Hol-loway, "The ¯eld of an electric dipole and the polarizability of a conducting object embedded in the interface between dielectric materials," Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009.

    44. Holloway, , C. L., , M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a meta¯lm: With an application to a controllable surface composed of resonant particles," IEEE Trans. Electromag. Compat., Vol. 47, No. 4, 853-865, 2005.

    45. Scher, , A. D., , "Boundary effects in the electromagnetic response of a metamaterial using the point-dipole interaction model," Ph.D. Thesis, University of Colorado at Boulder, , 2008..

    46. Nicolson, , A. M. , G. F. Ross, and , "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas.,, Vol. 19, No. 4, 377-382, 1970.

    47. Wier, , W. B., , "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.

    48. Baker-Jarvis, , J., , E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with transmis-sion/reflection method," IEEE Trans. Microw. Theory Tech.,, Vol. 38, No. 8, 1096-1103, 1990.

    49. Baker-Jarvis, , J., , M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," Nat. Inst. Stand. Technol. Tech. Note, Vol. 1355-R, 1993.