Vol. 57
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-12-21
Excitation of Azimuthal Surface Waves in Toroidal Waveguide by Rotating Electron Beam at the Range of Electron Cyclotron Resonance
By
Progress In Electromagnetics Research B, Vol. 57, 267-277, 2014
Abstract
Azimuthal Surface Waves (ASWs) are electromagnetic waves of the surface type, which propagate across an external steady magnetic field in plasma filled metal waveguides. The interaction between extraordinary ASWs and an electron beam that rotates along Larmor orbits in the gap between the plasma column and the metal wall is studied here. The initial stage of the ASW excitation is studied analytically and numerically. Growth rates of the ASW beam instability are analyzed as functions of the parameters of the plasma filled waveguide immersed in a steady magnetic field with toroidal nonuniformity. This nonuniformity leads also to the appearance of corrections to the ASW eigen frequencies. It is shown that the beam-wave interaction in a toroidally nonuniform steady magnetic field is not weaker than in the case of a uniform magnetic field. However, in the studied case, the efficiency of the power transfer from the beam into the excited waves becomes restricted due to the electron drift in the nonuniform magnetic field.
Citation
Volodymyr Girka, Igor Oleksandrovych Girka, Alexander Vitaliyevich Kostenko, and Ivan Viktorovych Pavlenko, "Excitation of Azimuthal Surface Waves in Toroidal Waveguide by Rotating Electron Beam at the Range of Electron Cyclotron Resonance," Progress In Electromagnetics Research B, Vol. 57, 267-277, 2014.
doi:10.2528/PIERB13111502
References

1. Humphries, S., Charged Particle Beams, John Wiley and Sons Inc., New York, 1990.

2. Kuzelev, M. V. and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasma, Nauka, Moscow, 1990.

3. Kainer. , S., J. D. Gaffey, C. P. Price, et al. "Nonlinear wave interactions and evolution of a ring-beam distribution of energetic electrons ," Physics of Fluids, Vol. 31, 2238-2248, 1988.
doi:10.1063/1.867003

4. Saito, H. and J. S. Wurtele, "The linear theory of the circular free-electron laser," Physics of Fluids, Vol. 30, 2209-2220, 1987.
doi:10.1063/1.866155

5. Sabry, R. and S. K. Chaudhuri, "Formulation of emission from relativistic free electrons in a ring structure for electro-optical applications," Progress In Electromagnetics Research, Vol. 50, 135-161, 2005.
doi:10.2528/PIER04052001

6. Destler, W. W., E. Chojnacki, R. F. Hoeberling, et al. "High-power microwave generation from large-orbit devices," IEEE Transactions on Plasma Science, Vol. 16, 71-89, 1988.
doi:10.1109/27.3797

7. Kovalev, N. F., N. G. Kolganov, A. V. Palitsin, and M. I. Fuks, "Relativistic BWO with cyclotron selection of an asymmetric wave," Proceedings of the International Workshop Strong Microwaves in Plasmas, Vol. 2, 845-850, 2000 .

8. Shkvarunets, A. G., S. Kobayashi, Y. Carmel, et al. "Operation of a relativistic backward-wave oscillator ¯lled with a preionized high-density radially inhomogeneous plasma," IEEE Transactions on Plasma Science, Vol. 26, No. 3, 905-917, 1998.
doi:10.1109/27.700800

9. Bratman, V. L., G. G. Denisov, Y. K. Kalynov, et al. "Novel types of cyclotron resonance devices," Proceedings of the International Workshop Strong Microwaves in Plasmas, Vol. 2, 683-702, 2000.

10. Vlasov, A. N., A. G. Shkvarunets, J. C. Rodgers, et al. "Overmoded GW-class surface-wave microwave oscillator," IEEE Transactions on Plasma Science, Vol. 28, No. 3, 505-560, 2000.

11. Girka, V. O., I. O. Girka, A. N. Kondratenko, and V. I. Tkachenko, "Azimuthal surface waves of magnetoactive plasma waveguides," Soviet Journal of Communications Technology and Electronics, Vol. 33, 37-41, 1988.

12. Girka, V. O., I. O. Girka, A. V. Girka, and I. V. Pavlenko, "Theory of azimuthal surface waves propagating in nonuniform waveguides," Journal of Plasma Physics, Vol. 77, 493-519, 2011.
doi:10.1017/S0022377810000644

13. Chojnacki, R. and W. W. Destler, "Microwave radiation from a low-energy rotating electron beam in an azimuthally periodic magnetic wiggler field," IEEE Journal of Quantum Electronics, Vol. 23, 1605-1609, 1987.
doi:10.1109/JQE.1987.1073551

14. Girka, V. O. and I. O. Girka, "Effect of toroidal magnetic field variations on the spectra of azimuthal surface waves in metal waveguides entirely filled with plasma ," Plasma Physics Reports, Vol. 28, 190-195, 2002.
doi:10.1134/1.1458985

15. Girka, V. O., I. O. Girka, and I. V. Pavlenko, "Excitation of ion azimuthal surface modes in magnetized plasma by annular flow of light ions," Progress In Electromagnetics Research M, Vol. 21, 267-278, 2011.
doi:10.2528/PIERM11092205

16. Aliev, Y. M., H. Schluter, and A. Shivarova, Guided-wave Produced Plasmas, Springer, New York, 2000.
doi:10.1007/978-3-642-57060-5

17. Ramos-Mendieta, F. and P. Halevi, "Surface electromagnetic waves in two-dimensional photonic crystals: E®ect of the position of the surface plane," Phys. Rev. B, Vol. 59, No. 23, 15112-15120, 1999.
doi:10.1103/PhysRevB.59.15112

18. Maier , S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

19. Abramowitz, M., I. Stegun, and , Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, , Washington, 1972.

20. Karpov, S. Y. and S. N. Stolyarov, "Propagation and transformation of electromagnetic waves in one-dimensional periodic structures ," Physics-Uspekhi, Vol. 36, 1-22, 1993.
doi:10.1070/PU1993v036n01ABEH002061

21. Aleksandrov, A. F., L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics, Springer-Verlag, Heidelberg, 1984.
doi:10.1007/978-3-642-69247-5

21. Girka, I. O., V. O. Girka, and I. V. Pavlenko, "In°uence of the plasma column cross-section non-circularity on the excitation of the azimuthal surface waves in electron cyclotron frequency range by annular electron beam ," Progress In Electromagnetics Research M, Vol. 26, 39-53, 2012.