Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-03

Bias Compensation in h /a/α Polarimetric SAR Decomposition and Its Implication for the Classification

By Mohamed Yahia, Faten Khalfa, Marwa Chabir, and Taoufik Aguili
Progress In Electromagnetics Research B, Vol. 68, 105-121, 2016
doi:10.2528/PIERB16033005

Abstract

Classification of land cover types is one important application of polarimetric synthetic aperture radar (PolSAR) remote sensing. There are numerous features that can be extracted from PolSAR images. Among them, eigenvalues λi, entropy H, alpha angle α, and anisotropy A are effective and popular tools for the analysis and quantitative estimation of the physical parameters. Nevertheless, the speckle noise appearing in PolSAR images reduces the accuracy of image classification. Consequently, it should be filtered correctly. Generally, filtering PolSAR data generate biased estimates of λi/H/A/α parameters. In this paper, we studied the effects of bias compensation on supervised and unsupervised PolSAR image classification. We applied the asymptotic quasi maximum likelihood estimator AQ-MLE and Yahia/Aguili's bias compensation methods. To improve the classification accuracies, we demonstrated that bias compensation must be associated with speckle reduction. The combination of the span with biased parameters reduced the effects of bias but did not eliminate it totally. Simulated and real data were used for validation.

Citation


Mohamed Yahia, Faten Khalfa, Marwa Chabir, and Taoufik Aguili, "Bias Compensation in h /a/α Polarimetric SAR Decomposition and Its Implication for the Classification," Progress In Electromagnetics Research B, Vol. 68, 105-121, 2016.
doi:10.2528/PIERB16033005
http://www.jpier.org/PIERB/pier.php?paper=16033005

References


    1. Oliver, C. and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech House, Boston, MA, 1998.

    2. Cloude, S. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 2, 498-518, Mar. 1996.
    doi:10.1109/36.485127

    3. Cloude, S. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 1, 68-78, Jan. 1997.
    doi:10.1109/36.551935

    4. Park, S.-E. and W. M. Moon, "Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, 2652-2664, Aug. 2007.
    doi:10.1109/TGRS.2007.897691

    5. Salehi, M., M. R. Sahebi, and Y. Maghsoudi, "Improving the accuracy of urban land cover classification using RADARSAT-2 PolSAR data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 7, No. 4, 1394-1401, Apr. 2014.
    doi:10.1109/JSTARS.2013.2273074

    6. Bhattacharya, A. and R. Touzi, "Polarimetric SAR urban classification using the Touzi target scattering decomposition," Can. J. Remote Sens., Vol. 37, No. 4, 323-332, Aug. 2011.
    doi:10.5589/m11-042

    7. Antropov, O., Y. Rauste, H. Astola, T. Hame, and M. T. Hallikainen, "Land cover and soil type mapping from spaceborne PolSAR data at L-band with probabilistic neural network," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 9, 5256-5270, Sep. 2014.
    doi:10.1109/TGRS.2013.2287712

    8. Lee, J. S., M. R. Grunes, T. L. Ainsworth, L. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification of polarimetric SAR imagery based on target decomposition and Wishart distribution," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2249-2258, Sep. 1999.
    doi:10.1109/36.789621

    9. Ferro-Famil, L., E. Pottier, and J. S. Lee, "Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha --- Wishart classifier," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 11, 2332-2342, Nov. 2001.
    doi:10.1109/36.964969

    10. Yahia, M. and Z. Belhadj, "Unsupervised classification of polarimetric SAR images using neural networks," Proc. IEEE Int. Geosci. Remote Sens. Symp., 203-205, Jul. 2003.

    11. Dabboor, M., J. M. Collins, V. Karathanassi, and A. Braun, "An unsupervised classification approach for polarimetric SAR data based on the Chernoff distance for complex Wishart distribution," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 7, 4200-4213, Jul. 2013.
    doi:10.1109/TGRS.2012.2227755

    12. Cao, F., W. Hong, Y.Wu, and E. Pottier, "An unsupervised segmentation with an adaptive number of clusters using the SPAN/H=α=A space and the complex Wishart clustering for fully polarimetric SAR data analysis," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3454-3467, Nov. 2007.
    doi:10.1109/TGRS.2007.907601

    13. Zhang, Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
    doi:10.2528/PIER09041905

    14. Gou, S., X. Qiao, X. Zhang, W.Wang, and F. Du, "Eigenvalue analysis-based approach for Pol-SAR image classification," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 2, 805-818, Feb. 2014.
    doi:10.1109/TGRS.2013.2244096

    15. Goodman, J. W., "Some fundamental properties of speckle," J. Opt. Soc. Amer., Vol. 66, No. 11, 1145-1150, Nov. 1976.
    doi:10.1364/JOSA.66.001145

    16. Lee, J. S., "Speckle analysis and smoothing of synthetic aperture radar images," Comput. Graph. Image Process., Vol. 17, 24-32, 1981.
    doi:10.1016/S0146-664X(81)80005-6

    17. Yahia, M. and Z. Belhadj, "Polarimetric SAR denoising uing adaptive prediction technique," Proc. IEEE Int. Geosci. Remote Sens. Symp., 4025-4027, Jul. 2006.

    18. Lopez-Martinez, C., E. Pottier, and S. Cloude, "Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 9, 2058-2074, Sep. 2005.
    doi:10.1109/TGRS.2005.853934

    19. Foucher, S., G. Farage, and G. B. Benie, "Application of bootstrap techniques for the estimation of target decomposition parameters in radar polarimetry," Proc. IEEE Int. Geosci. Remote Sens. Symp., 2224-2228, Jun. 2007.

    20. Lee, J. S., T. Ainsworth, J. Kelly, and C. Lopez-Martinez, "Evaluation and bias removal of multi-look effect on entropy/alpha/anisotropy in polarimetric SAR decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3039-3052, Oct. 2008.
    doi:10.1109/TGRS.2008.922033

    21. Lopez-Martinez, C., A. Alonso-Gonzalez, and X. Fµabregas, "Perturbation analysis of eigenvector-based target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 4, 2081-2086, Apr. 2014.
    doi:10.1109/TGRS.2013.2257802

    22. Yahia, M. and T. Aguili, "Characterization and correction of multilook effects on eigendecomposition parameters in PolSAR images," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 9, 5237-5246, Sep. 2015.
    doi:10.1109/TGRS.2015.2419717

    23. Lee, J. S., M. R. Grunes, and G. de Grandi, "Polarimetric SAR speckle filtering and its implication for classification," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2363-2373, Sep. 1999.
    doi:10.1109/36.789635

    24. Bezdek, J. C., R. Ehrlich, and W. Full, "FCM: The fuzzy c-means clustering algorithm," Computer and Geosciences, Vol. 10, 191-203, 1984.
    doi:10.1016/0098-3004(84)90020-7

    25. Duquenoy, M., J. P. Ovarlez, L. Ferro-Famil, and E. Pottier, "Supervised classification of scatterers on SAR imaging based on incoherent polarimetric time-frequency signatures," European Signal Processing Conference, 764-768, Aug. 2009.

    26. Lippmann, R. P., "An introduction to computing with neural nets," IEEE ASSP Magazine, 4-22, Apr. 1994.