Vol. 34
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-08-18
Speckle Suppression by Integrated Sum of Fully Developed Negatively Correlated Patterns in Coherent Imaging
By
Progress In Electromagnetics Research B, Vol. 34, 1-13, 2011
Abstract
A coherent imaging system images a frame or an object onto a changing diffuser and projects the resulting pattern which generally contains speckles. Using a spatial light modulator (SLM) as the changing diffuser, the speckles in the pattern are suppressed without the need for any other mechanisms. With $M$ random phasor arrays being displayed in the SLM during the integration time of a detector, a suppression factor (Cf) of speckles, 1/√M, is achievable in the projected pattern, which is the sum of the intensity of M uncorrelated patterns. This paper shows both theoretically and in simulations that the Cf of the sum pattern was considerably reduced when two elementary patterns with fully developed speckles were negatively correlated. With the correlation coefficients of the elementary patterns found at [-0.3, -0.25], the Cf of the sum of 10 negatively-correlated speckle patterns was 48% lower than the Cf of the sum of 10\,uncorrelated speckle patterns. The negatively correlated patterns can be implemented using spatial light modulators or diffractive optical elements, and are used to suppress speckle noise in digital holography, laser projection display, and holographic display projections with relatively high efficiency.
Citation
Wei-Feng Hsu, and I.-Lin Chu, "Speckle Suppression by Integrated Sum of Fully Developed Negatively Correlated Patterns in Coherent Imaging," Progress In Electromagnetics Research B, Vol. 34, 1-13, 2011.
doi:10.2528/PIERB11070601
References

1. Goodman, J. W., "Some fundamental properties of speckle," Journal of Optical Society America, Vol. 66, 1145-1150, 1976.
doi:10.1364/JOSA.66.001145

2. Silverstein, S. D. and M. O'Donnell, "Theory of frequency and temporal compounding in coherent imaging: Speckle suppression and image resolution," Journal of Optical Society America A, Vol. 5, 104-113, 1988.
doi:10.1364/JOSAA.5.000104

3. Goodman, J. W., Speckle Phenomena in Optics: Theory and Applications, Roberts & Co., 2007.

4. Rojas, J. A. M., J. Alpuente, E. Bolívar, P. López-Espí, S. Vignote, and M. I. Rojas, "Empirical characterization of wood surfaces by means of iterative autocorrelation of laser speckle patterns," Progress In Electromagnetics Research, Vol. 80, 295-306, 2008.
doi:10.2528/PIER07112706

5. Iwai, T. and T. Asakura, "Speckle reduction in coherent information processing," Proceedings of The IEEE, Vol. 84, 765-781, 1996.
doi:10.1109/5.488745

6. Wang, L., T. Tschudi, T. Halldórsson, and P. R. Pétursson, "Speckle reduction in laser projection systems by diffractive optical elements," Applied Optics, Vol. 37, 1770-1775, 1998.
doi:10.1364/AO.37.001770

7. Trisnadi, J. I., "Hadamard speckle contrast reduction," Optics Letters, Vol. 29, 11-13, 2004.
doi:10.1364/OL.29.000011

8. Qi, F., V. Tavakol, D. Schreurs, and B. K. J. C. Nauwelaers, "Discussion on validity of Hadamard speckle contrast reduction in coherent imaging system," Progress In Electromagnetics Research, Vol. 104, 125-143, 2010.
doi:10.2528/PIER10040604

9. Yurlov, V., A. Lapchuk, S. Yun, J. Song, and H. Yang, "Speckle suppression in scanning laser display," Applied Optics, Vol. 47, 179-187, 2008.
doi:10.1364/AO.47.000179

10. Akram, M. N., V. Kartashov, and Z. Tong, "Speckle reduction in line-scan laser projectors using binary phase codes," Optics Letters, Vol. 35, 444-446, 2010.
doi:10.1364/OL.35.000444

11. Kartashov, V. and M. N. Akram, "Speckle suppression in projection displays by using a motionless changing diffuser," Journal of Optical Society America A, Vol. 27, 2593-2601, 2010.
doi:10.1364/JOSAA.27.002593

12. Ouyang, G., Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, "Speckle reduction using a motionless diffractive optical element," Optics Letters, Vol. 35, 2852-2854, 2010.
doi:10.1364/OL.35.002852

13. Tong, Z., M. N. Akram, and X. Chen, "Speckle reduction using orthogonal arrays in laser projectors," Applied Optics, Vol. 49, 6425-6429, 2010.
doi:10.1364/AO.49.006425

14. Chang, Y.-S., H. Y. Lin, and W.-F. Hsu, "Speckle suppression by 2D spatial light modulator in laser projection system," SID 2011 Symposium, Vol. 32.2, Los Angeles, May 15--19, 2011.

15. Bay, C., N. Hubner, J. Freeman, and T. Wilkinson, "Maskless photolithography via holographic optical projection," Optics Letters, Vol. 35, 2230-2232, 2010.
doi:10.1364/OL.35.002230

16. Hsu, W.-F. and C.-F. Yeh, "Speckle suppression in holographic projection displays by temporal integration of diffractive optical elements," Digital Holography and Three Dimensional Imaging, DH, paper DTuC4, Tokyo, Japan, May 9--11, 2011.

17. Buckley, E., "Holographic laser projection," J. Display Technology, Vol. 7, 135-140, 2011.
doi:10.1109/JDT.2010.2048302

18. Hsu, W.-F., Y.-W. Chen, and Y.-H. Su, "Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements," Applied Optics, Vol. 50, 3646-3652, 2011.
doi:10.1364/AO.50.003646

19. Goodman, J. W., Statistical Optics, 17, John Wiley & Sons, Inc., NY, 1985.

20. Kreyszig, E., Advanced Engineering Mathematics, 9th Ed., 1089, John Wiley & Sons, Inc., NY, 2006.

21. Pedersen, H. M., "Theory of speckle-correlation measurements using nonlinear detectors," Journal of Optical Society America A, Vol. 1, 850-855, 1984.
doi:10.1364/JOSAA.1.000850

22. Marron, J. and G. M. Morris, "Correlation measurements using clipped laser speckle," Applied Optics, Vol. 25, 789-793, 1986.
doi:10.1364/AO.25.000789

23. Ogiwara, A. and J. Ohtsubo, "Maximum dynamic range of clipped correlation of integrated laser speckle intensity," Journal of Optical Society America A, Vol. 5, 403-405, 1988.
doi:10.1364/JOSAA.5.000403

24. Ohtsubo, J. and T. Asakura, "Statistical properties of the sum of partially developed speckle patterns," Optics Letters, Vol. 1, 98-100, 1977.
doi:10.1364/OL.1.000098