Vol. 82
Latest Volume
All Volumes
PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-10-25
On a Rigorous Proof of the Existence of Complex Waves in a Dielectric Waveguide of Circular Cross Section
By
Progress In Electromagnetics Research B, Vol. 82, 137-164, 2018
Abstract
Existence of symmetric complex waves in a dielectric rod (DR) - a dielectric waveguide of circular cross section - is proved by analyzing functional properties of the dispersion equations (DEs) using the theory of functions of several complex variables and validating the existence of complex roots of DE. A closed-form iteration procedure for calculating the roots in the complex domain supplied with efficient choice of initial approximation is proposed. Numerical modeling is performed with the help of a parameter-differentiation method applied to the analytical and numerical solution of DEs.
Citation
Yury V. Shestopalov, and Ekaterina A. Kuzmina, "On a Rigorous Proof of the Existence of Complex Waves in a Dielectric Waveguide of Circular Cross Section," Progress In Electromagnetics Research B, Vol. 82, 137-164, 2018.
doi:10.2528/PIERB18050102
References

1. Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press, Orlando, FL, 1974.

2. Snyder, A. W. and J. Love, Optical Waveguide Theory, Springer, Berlin, 1983.

3. Felsen, L. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, NJ, 1973.

4. Rajevsky, A. and S. Rajevsky, Complex Waves, Radiotekhnika, Moscow, 2010.

5. Jablonski, T. F., "Complex modes in open lossless dielectric waveguides," Journal of the Optical Society of America A, Vol. 11, 1272-1282, 1994.
doi:10.1364/JOSAA.11.001272

6. Kartchevski, E. M., et al. "Mathematical analysis of the generalized natural modes of an inhomogeneous optical fiber," SIAM Journal on Applied Mathematics, Vol. 65, 2033-2048, 2005.
doi:10.1137/040604376

7. Yang, S. and J. Song, "Analysis of guided and leaky TM0n and TE0n modes in circular dielectric waveguide," Progress In Electromagnetics Research B, Vol. 66, 143-156, 2016.
doi:10.2528/PIERB15120802

8. Arnbak, J., "Leaky waves on a dielectric rod," Electronics Letters, Vol. 5, No. 3, 41-42, 1969.
doi:10.1049/el:19690027

9. Kim, K. Y., H.-S. Tae, and J.-H. Lee, "Leaky dispersion characteristics in circular dielectric rod using Davidenko’s method," J. Korea Elect. Eng. Soc., Vol. 5, No. 2, 72-79, 2005.

10. Shestopalov, Y. and Y. Smirnov, "Eigenwaves in waveguides with dielectric inclusions: Spectrum," Eigenwaves in waveguides with dielectric inclusions: Spectrum, Vol. 93, 408-427, 2014.

11. Shestopalov, Y. and Y. Smirnov, "Eigenwaves in waveguides with dielectric inclusions: Completeness," Applicable Analysis, Vol. 93, 1824-1845, 2014.
doi:10.1080/00036811.2013.850494

12. Shestopalov, V. and Y. Shestopalov, Spectral Theory and Excitation of Open Structures, IEE, London, 1996.
doi:10.1049/PBEW042E

13. Shestopalov, Y., "Resonant states in waveguide transmission problems," Progress In Electromagnetics Research B, Vol. 64, 119-143, 2015.
doi:10.2528/PIERB15083001

14. Shestopalov, Y., E. Kuzmina, and A. Samokhin, "On a mathematical theory of open metal-dielectric waveguides," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 5, 2014.

15. Barlow, H. M. and J. Brown, Radio Surface Waves, Oxford University Press, New York, 1962.

16. John, G., "Electromagnetic surface waveguides," IEE-IERE Proceedings India, Vol. 15, 139-171, 1977.
doi:10.1049/iipi.1977.0043

17. Shestopalov, Y. and E. Kuzmina, "Waves in a lossy Goubau line," Proc. 10th European Conference on Antennas and Propagation EuCAP 2016, 1107-1111, 2016.

18. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.