Vol. 94
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-12-13
A Well-Posed and Effective High-Order Impedance Boundary Condition for the Time-Harmonic Scattering Problem from a Multilayer Coated 3-d Object
By
Progress In Electromagnetics Research B, Vol. 94, 127-144, 2021
Abstract
The time-harmonic scattering problem from an isotropic multilayer coated 3-D object is considered. The coating is modeled by an impedance boundary condition (IBC) prescribed on the outer surface of the coating. The standard Leontovich IBC is local and constitutes a poor approximation for low index materials. A possible remedy is to employ high order IBCs (HOIBCs) involving tangential differential operators multiplied by coefficients. A generic HOIBC formulation (termed here IBC3) with five coefficients is considered here. Sufficient uniqueness conditions (SUCs) are derived for the corresponding Maxwell's problem (i.e. Maxwell's equations in free-space, radiation condition at infinity and IBC3 on the surface). The IBC3 coefficients are obtained by minimizing, with the SUCs as constraints, the error between either the exact and IBC3 impedances (local planar approximation) or the exact and IBC3 Mie series coefficients (local spherical approximation). Finally, the IBC3 is numerically implemented in a well-posed EFIE+MFIE formulation. Numerical results obtained on 3D objects demonstrate the high accuracy achieved with the constrained IBC3.
Citation
Bruno Stupfel, Pierre Payen, and Olivier Lafitte, "A Well-Posed and Effective High-Order Impedance Boundary Condition for the Time-Harmonic Scattering Problem from a Multilayer Coated 3-d Object," Progress In Electromagnetics Research B, Vol. 94, 127-144, 2021.
doi:10.2528/PIERB21072803
References

1. Leontovich, M., Investigation on Radiowave Propagation, Part II, Academy of Sciences, 1948.

2. Durufle, M., H. Haddar, and P. Joly, "Higher order generalized impedance boundary conditions in electromagnetic scattering problems," C. R. Physique, Vol. 7, 533-542, 2006.
doi:10.1016/j.crhy.2006.03.010

3. Durufle, M., V. Peron, and C. Poignard, "Thin layer models for electromagnetism," Commun. Comput. Phys., Vol. 16, No. 1, 213-238, 2014.
doi:10.4208/cicp.120813.100114a

4. Peron, V., K. Schmidt, and M. Durufle, "Equivalent transmission conditions for the time-harmonic Maxwell equations in 3D for a medium with a highly conductive thin sheet," SIAM J. Appl. Math., Vol. 76, No. 3, 1031-1052, 2016.
doi:10.1137/15M1012116

5. Karp, S. N., F. C. Karal, and Jr., "Generalized impedance boundary conditions with applications to surface wave structures," Electromagnetic Wave Theory, 479-483, Part 1, J. Brown ed., Pergamon, N. Y., 479–483, 1967.

6. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Electromagnetic Waves Series 41, 1995.
doi:10.1049/PBEW041E

7. Hoppe, D. J. and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Taylor & Francis ed., 1995.

8. Marceaux, O. and B. Stupfel, "High-order impedance boundary conditions for multilayer coated 3D objects," IEEE Trans. Antennas Propagat., Vol. 48, 429-436, 2000.
doi:10.1109/8.841904

9. Stupfel, B. and D. Poget, "Sufficient uniqueness conditions for the solution of the time harmonic Maxwell's equations associated with surface impedance boundary conditions," J. Comp. Phys., Vol. 230, 4571-4587, 2011.
doi:10.1016/j.jcp.2011.02.032

10. Stupfel, B., "One-way domain decomposition method with adaptive absorbing boundary condition for the solution of Maxwell's equations," IEEE Trans. Antennas Propagat., Vol. 61, No. 10, 5100-5108, 2013.
doi:10.1109/TAP.2013.2267192

11. Stupfel, B., "Implementation of high order impedance boundary conditions in some integral equation formulations," IEEE Trans. Antennas Propagat., Vol. 63, No. 4, 1658-1668, 2015.
doi:10.1109/TAP.2015.2392125

12. Aubakirov, A., "Electromagnetic scattering problem with higher order impedance boundary conditions and integral methods,", Ph.D. dissertation, Universite de Cergy-Pontoise, France, 2014.

13. Soudais, P., "3D MoM computations with high order impedance boundary conditions in some integral equation formulations," Int. Conf. in Electromagnetics and Applications, Verona, September 2017.

14. Bendali, A., M'B. Fares, and J. Gay, "A boundary element solution of the Leontovich problem," IEEE Trans. Antennas Propagat., Vol. 47, No. 10, 1597-1605, 1999.
doi:10.1109/8.805905

15. Yan, S. and J. M. Jin, "Self-dual integral equations for electromagnetic scattering from IBC objects," IEEE Trans. Antennas Propagat., Vol. 61, No. 11, 5533-5546, 2013.
doi:10.1109/TAP.2013.2276929

16. Li, W. D., W. Hong, H. X. Zhou, and Z. Song, "Novel Buffa-Christianssen function for improving CFIE with impedance boundary conditions," IEEE Trans. Antennas Propagat., Vol. 60, No. 8, 3763-3771, 2012.
doi:10.1109/TAP.2012.2201121

17. Stupfel, B. and M. Chanaud, "High-order transmission conditions in a domain decomposition method for the time-harmonic Maxwell's equations in inhomogeneous media," J. Comp. Phys., Vol. 372, 385-405, 2018.
doi:10.1016/j.jcp.2018.06.050

18. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, 1986.

19. Stupfel, B., "Homogenization of a multilayer coating. Application to model-order reduction," IEEE Trans. Antennas Propagat., Vol. 69, No. 3, 1528-1534, 2021.
doi:10.1109/TAP.2020.3026445

20. Stupfel, B. and M. Mognot, "Implementation and derivation of conformal absorbing boundary conditions for the vector wave equation," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 12, 1653-1677, 1998.
doi:10.1163/156939398X00584

21. Nedelec Acoustic and Electromagnetic Equations — Integral Representations for Harmonic Problems, Springer-Verlag, 2001.
doi:10.1007/978-1-4757-4393-7

22. Stupfel, B., "Characterization of surface waves in a multilayer coating. Application to far-field control," IEEE Trans. Antennas Propagat., Vol. 69, No. 6, 3623-3627, 2021.
doi:10.1109/TAP.2020.3031811

23. Stupfel, B., R. Le Martret, P. Bonnemason, and B. Scheurer, "Combined boundary-element and finite-element method for the scattering problem by axisymmetrical penetrable objects," Proceedings of the International Symposium on Mathematical and Numerical Aspects of Wave Propagation Phenomena, 332-341, SIAM ed., 1991.

24. Van Bladel, J. G., Electromagnetic Fields, 2007.
doi:10.1002/047012458X

25. Howell, W. E. and H. Uberall, "Selective observation of resonances via their ringing in transient radar scattering, as illustrated for conducting and coated spheres," IEEE Trans. Antennas Propagat., Vol. 38, 1990.

26. Taylor, D. J., A. K. Jordan, P. J. Moser, and H. Uberall, "Complex resonances of conducting spheres with lossy coatings," IEEE Trans. Antennas Propagat., Vol. 38, No. 2, 236-240, 1990.
doi:10.1109/8.45126

27. Stupfel, B. and Y. Pion, "Impedance boundary conditions for finite planar and curved frequency selective surfaces," IEEE Trans. Antennas Propagat., Vol. 53, No. 4, 1415-1425, 2005.
doi:10.1109/TAP.2005.844417

28. Stupfel, B., "Impedance boundary conditions for finite planar and curved frequency selective surfaces embedded in dielectric layers," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3654-3663, 2005.
doi:10.1109/TAP.2005.858803