1. Leontovich, M., Investigation on Radiowave Propagation, Part II, Academy of Sciences, 1948.
2. Durufle, M., H. Haddar, and P. Joly, "Higher order generalized impedance boundary conditions in electromagnetic scattering problems," C. R. Physique, Vol. 7, 533-542, 2006.
doi:10.1016/j.crhy.2006.03.010 Google Scholar
3. Durufle, M., V. Peron, and C. Poignard, "Thin layer models for electromagnetism," Commun. Comput. Phys., Vol. 16, No. 1, 213-238, 2014.
doi:10.4208/cicp.120813.100114a Google Scholar
4. Peron, V., K. Schmidt, and M. Durufle, "Equivalent transmission conditions for the time-harmonic Maxwell equations in 3D for a medium with a highly conductive thin sheet," SIAM J. Appl. Math., Vol. 76, No. 3, 1031-1052, 2016.
doi:10.1137/15M1012116 Google Scholar
5. Karp, S. N., F. C. Karal, and Jr., "Generalized impedance boundary conditions with applications to surface wave structures," Electromagnetic Wave Theory, 479-483, Part 1, J. Brown ed., Pergamon, N. Y., 479–483, 1967. Google Scholar
6. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Electromagnetic Waves Series 41, 1995.
doi:10.1049/PBEW041E
7. Hoppe, D. J. and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Taylor & Francis ed., 1995.
8. Marceaux, O. and B. Stupfel, "High-order impedance boundary conditions for multilayer coated 3D objects," IEEE Trans. Antennas Propagat., Vol. 48, 429-436, 2000.
doi:10.1109/8.841904 Google Scholar
9. Stupfel, B. and D. Poget, "Sufficient uniqueness conditions for the solution of the time harmonic Maxwell's equations associated with surface impedance boundary conditions," J. Comp. Phys., Vol. 230, 4571-4587, 2011.
doi:10.1016/j.jcp.2011.02.032 Google Scholar
10. Stupfel, B., "One-way domain decomposition method with adaptive absorbing boundary condition for the solution of Maxwell's equations," IEEE Trans. Antennas Propagat., Vol. 61, No. 10, 5100-5108, 2013.
doi:10.1109/TAP.2013.2267192 Google Scholar
11. Stupfel, B., "Implementation of high order impedance boundary conditions in some integral equation formulations," IEEE Trans. Antennas Propagat., Vol. 63, No. 4, 1658-1668, 2015.
doi:10.1109/TAP.2015.2392125 Google Scholar
12. Aubakirov, A., "Electromagnetic scattering problem with higher order impedance boundary conditions and integral methods,", Ph.D. dissertation, Universite de Cergy-Pontoise, France, 2014. Google Scholar
13. Soudais, P., "3D MoM computations with high order impedance boundary conditions in some integral equation formulations," Int. Conf. in Electromagnetics and Applications, Verona, September 2017. Google Scholar
14. Bendali, A., M'B. Fares, and J. Gay, "A boundary element solution of the Leontovich problem," IEEE Trans. Antennas Propagat., Vol. 47, No. 10, 1597-1605, 1999.
doi:10.1109/8.805905 Google Scholar
15. Yan, S. and J. M. Jin, "Self-dual integral equations for electromagnetic scattering from IBC objects," IEEE Trans. Antennas Propagat., Vol. 61, No. 11, 5533-5546, 2013.
doi:10.1109/TAP.2013.2276929 Google Scholar
16. Li, W. D., W. Hong, H. X. Zhou, and Z. Song, "Novel Buffa-Christianssen function for improving CFIE with impedance boundary conditions," IEEE Trans. Antennas Propagat., Vol. 60, No. 8, 3763-3771, 2012.
doi:10.1109/TAP.2012.2201121 Google Scholar
17. Stupfel, B. and M. Chanaud, "High-order transmission conditions in a domain decomposition method for the time-harmonic Maxwell's equations in inhomogeneous media," J. Comp. Phys., Vol. 372, 385-405, 2018.
doi:10.1016/j.jcp.2018.06.050 Google Scholar
18. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, 1986.
19. Stupfel, B., "Homogenization of a multilayer coating. Application to model-order reduction," IEEE Trans. Antennas Propagat., Vol. 69, No. 3, 1528-1534, 2021.
doi:10.1109/TAP.2020.3026445 Google Scholar
20. Stupfel, B. and M. Mognot, "Implementation and derivation of conformal absorbing boundary conditions for the vector wave equation," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 12, 1653-1677, 1998.
doi:10.1163/156939398X00584 Google Scholar
21. Nedelec Acoustic and Electromagnetic Equations — Integral Representations for Harmonic Problems, Springer-Verlag, 2001.
doi:10.1007/978-1-4757-4393-7
22. Stupfel, B., "Characterization of surface waves in a multilayer coating. Application to far-field control," IEEE Trans. Antennas Propagat., Vol. 69, No. 6, 3623-3627, 2021.
doi:10.1109/TAP.2020.3031811 Google Scholar
23. Stupfel, B., R. Le Martret, P. Bonnemason, and B. Scheurer, "Combined boundary-element and finite-element method for the scattering problem by axisymmetrical penetrable objects," Proceedings of the International Symposium on Mathematical and Numerical Aspects of Wave Propagation Phenomena, 332-341, SIAM ed., 1991. Google Scholar
24. Van Bladel, J. G., Electromagnetic Fields, 2007.
doi:10.1002/047012458X
25. Howell, W. E. and H. Uberall, "Selective observation of resonances via their ringing in transient radar scattering, as illustrated for conducting and coated spheres," IEEE Trans. Antennas Propagat., Vol. 38, 1990. Google Scholar
26. Taylor, D. J., A. K. Jordan, P. J. Moser, and H. Uberall, "Complex resonances of conducting spheres with lossy coatings," IEEE Trans. Antennas Propagat., Vol. 38, No. 2, 236-240, 1990.
doi:10.1109/8.45126 Google Scholar
27. Stupfel, B. and Y. Pion, "Impedance boundary conditions for finite planar and curved frequency selective surfaces," IEEE Trans. Antennas Propagat., Vol. 53, No. 4, 1415-1425, 2005.
doi:10.1109/TAP.2005.844417 Google Scholar
28. Stupfel, B., "Impedance boundary conditions for finite planar and curved frequency selective surfaces embedded in dielectric layers," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3654-3663, 2005.
doi:10.1109/TAP.2005.858803 Google Scholar