Department of Electrical and Computer Engineering
University of Alberta
Canada
HomepageSchool of Electrical and Electronic Engineering
Nanyang Technological University
Singapore 639798
Homepage1. "IEEE Standard for Radar Definitions," IEEE Std 686-2017 (Revision of IEEE Std 686-2008), 1-54, Sept. 13, 2017. Google Scholar
2. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech Pub, 2004.
doi:10.1049/SBRA026E
3. Dobrenz, L. T., A. Spadoni, and M. Jorgensen, "Aviation archeology of the horten 229 v3 aircraft," 10th AIAA Aviation Technology, Integration and Operations (ATIO) Conference, Texas, 2010. Google Scholar
4. Ufimtsev, P. Y., "Method of edge waves in the physical theory of diffraction," Soviet Radio, Moscow, 1962. Google Scholar
5. Goodall, J. C., Lockheed SR-71 Blackbird: The Illustrated History of America's Legendary Mach 3 Spy Plane, Schiffer Publishing Ltd, 2018.
6. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, 139-150, 2014.
doi:10.1038/nmat3839 Google Scholar
7. Iyer, A. K., A. Alu, and A. Epstein, "Metamaterials and metasurfaces --- Historical context, recent advances, and future directions," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1223-1231, 2020.
doi:10.1109/TAP.2020.2969732 Google Scholar
8. Bukhari, S. S., Y. J. Vardaxoglou, and W. Whittow, "A metasurfaces review: Definitions and applications," Applied Sciences, Vol. 9, No. 13, 2019.
doi:10.3390/app9132727 Google Scholar
9. Chen, H.-T., A. J. Taylor, and N. Yu, "A review of metasurfaces: Physics and applications," Reports on Progress in Physics, Vol. 79, No. 7, 2016.
doi:10.1088/0034-4885/79/7/076401 Google Scholar
10. Chen, M., M. Kim, A. M. H. Wong, and G. V. Eleftheriades, "Huygens' metasurfaces from microwaves to optics: A review," Nanophotonics, Vol. 7, No. 6, 1207-1231, 2018.
doi:10.1515/nanoph-2017-0117 Google Scholar
11. Fan, Y., J. Wang, X. Fu, Y. Li, Y. Pang, L. Zheng, M. Yan, J. Zhang, and S. Qu, "Recent developments of metamaterials/metasurfaces for RCS reduction," EPJ Applied Metamaterials, Vol. 6, No. 15, 2019. Google Scholar
12. Zaker, R. and A. Sadeghzadeh, "Passive Techniquesfor target radar cross section reduction: A comprehensive review," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 11, 2020.
doi:10.1002/mmce.22411 Google Scholar
13. Teruel, O. Q., H. Chen, A. Diaz Rubio, G. Gok, A. Grbic, G. Minatti, E. Martini, S. Maci, G. V. Eleftheriades, M. Chen, N. I. Zheludev, N. Papasimakis, S. Choudhury, Z. A. Kudyshev, S. Saha, H. Reddy, A. Boltasseva, V. M. Shalaev, V. A. Kildishev, D. Sievenpiper, C. Caloz, A. Alu, Q. He, L. Zhou, G. Valerio, E. Rajo-Iglesias, Z. Sipus, F. Mesa, R. R. Berral, F. Medina, V. Asadchy, S. Tretyakov and C. Craeye, "Roadmap on metasurfaces," Journal of Optics, Vol. 21, No. 7, 2019. Google Scholar
14. Maggiora, R., M. Saccani, and D. Milanesio, "An innovative harmonic radar to track flying insects: The case of vespa velutina," Sci. Rep., Vol. 9, 2019. Google Scholar
15. Jeng, S.-L., W.-H. Chieng, and H.-P. Lu, "Estimating speed using a side-looking single-radar vehicle detector," IEEE Transactions on Intelligent Transportation Systems, Vol. 15, No. 2, 607-614, 2014.
doi:10.1109/TITS.2013.2283528 Google Scholar
16. Vinoy, K. J. and R. M. Jha, "Trends in radar absorbing materials technology," Sadhana, Vol. 20, 815-850, 1995.
doi:10.1007/BF02744411 Google Scholar
17. Guo, W. L., K. Chen, G. M. Wang, X. Y. Luo, Y. J. Feng, and C. W. Qiu, "Transmission-Reflection-Selective metasurface and its application to RCS reduction of high-gain reflector antenna," IEEE Transactions on Antennas and propagation, Vol. 68, No. 3, 1426-1435, Mar. 2020.
doi:10.1109/TAP.2019.2948742 Google Scholar
18. Rao, G. A. and S. P. Mahulikar, "Integrated review of stealth technology and its role in airpower," The Aeronautical Journal, Vol. 106, 629-642, 1968. Google Scholar
19. Howe, D., "Introduction to the basic technology of stealth aircraft: Part 2 --- Illumianation by the enemy (active considerations)," ASME Journal of Engineering for Gas Turbine and Power, Vol. 113, No. 75, 80-86, Jan. 1991.
doi:10.1115/1.2906534 Google Scholar
20. Franscis, R. H., "The development of blue steel," The Aeronautical Journal, Vol. 68, No. 641, 303-322, 1964. Google Scholar
21. Bao, G. and J. Lai, "Optimal shape design of a cavity for radar cross section reduction," SIAM Journal on Control and Optimization, Vol. 52, No. 4, 2122-2140, 2014.
doi:10.1137/130905708 Google Scholar
22. Peixoto, G. G., A. L. de Paula, L. A. Andrade, C. M. A. Lopes, and M. C. Rezende, "Radar Absorbing Material (RAM) and shaping on radar cross section reduction of dihedral corners," SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, Brasilia, 2005. Google Scholar
23. Swandic, J. R., Bandwidth limits and other considerations for monostatic RCS reduction by virtual shaping, Naval Surface Warfare Center, 2004.
24. Saville, P., Review of radar absorbing materials, Defence R&D Canada, Atlantic, Dartmouth, 2005.
25. Ali, Z., B. Muneer, B. S. Chowdry, S. Jehangir, and G. Hyder, "Design of microwave pyramidal absorber for semi anechoic chamber in 1 GHz ~ 20 GHz range," International Journal of Wireless and Microwave Technologies, Vol. 10, No. 2, 22-29, 2020.
doi:10.5815/ijwmt.2020.02.03 Google Scholar
26. Sweetman, B., "Stealth aircraft-history, technology and outlook," Gas Turbine and Aeroengine Congress and Exposition, Brussels, 1990. Google Scholar
27. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
28. Salisbury, W. W., Absorbent body for electromagnetic waves, US Patent 2599944, Jun. 10, 1952.
29. Chambers, B. and A. Tennant, "Optimized design of jaumann radar absorbing materials using a genetic algorithm," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 143, No. 1, 23-30, 1996.
doi:10.1049/ip-rsn:19960316 Google Scholar
30. Selvanayagam, M. and G. V. Eleftheriades, "Discontinuous electromagnetic fields usingorthogonal electric and magnetic currents for wavefront manipulation," Optics Express, Vol. 21, No. 12, 14409-14429, 2013.
doi:10.1364/OE.21.014409 Google Scholar
31. Wong, J. P. S., M. Selvanayagam, and G. V. Eleftheriades, "Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 12, No. 4, 360-375, 2014.
doi:10.1016/j.photonics.2014.07.001 Google Scholar
32. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets," Physics Review Letters, Vol. 110, No. 19, 197401, 2013.
doi:10.1103/PhysRevLett.110.197401 Google Scholar
33. Epstein, A. and G. V. Eleftheriades, "Shielded perfect reflectors based on omega-bianisotropic metasurfaces," International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), Athens, Greece, 2017. Google Scholar
34. Selvanayagam, M. and G. V. Eleftheriades, "Polarization control using tensor Huygens surfaces," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6155-6168, 2014.
doi:10.1109/TAP.2014.2359208 Google Scholar
35. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Physical Review Applied, 2014. Google Scholar
36. Yu, N. Y., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, Oct. 21, 2011.
doi:10.1126/science.1210713 Google Scholar
37. Sun, S., K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, D. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient metasurfaces," Nano Letters, Vol. 12, No. 12, 6223-6229, Nov. 28, 2012.
doi:10.1021/nl3032668 Google Scholar
38. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Materials, Vol. 11, 426-431, 2012.
doi:10.1038/nmat3292 Google Scholar
39. Pu, M., P. Chen, C. Wang, Y. Wang, Z. Zhao, C. Hu, C. Huang, and X. Luo, "Broadband anomalous reflection based on Gradient low-Q meta-surface," AIP Advances, Vol. 3, 052136, 2013. Google Scholar
40. Li, Y., J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, "Wideband radar cross section reduction using two-dimensional phase gradient metasurface," Applied Physics Letters, Vol. 221110, 2014. Google Scholar
41. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T. J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.
doi:10.2528/PIER14022606 Google Scholar
42. Cheng, Y., C. Wu, J. Yang, X. Peii, F. Jia, and R. Gong, "An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction," Applied Physics B, Vol. 143, Apr. 18, 2017. Google Scholar
43. Zheng, Q., Y. Li, J. Zhang, J. Wang, H. Ma, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, "Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase," Scientific Reports, Vol. 7, 43543, 2017.
doi:10.1038/srep43543 Google Scholar
44. Azizi, Y., M. Soleimani, and S. H. Sedighy, "Ultra-wideband radar cross section reduction using amplitude and phase gradient modulated surface," Journal of Applied Physics, Vol. 128, No. 20, 2020.
doi:10.1063/5.0009651 Google Scholar
45. Zhang, W., Y. Liu, S. Gong, J. Wang, and Y. Jiang, "Wideband RCS reduction of a slot array antenna using phase gradient metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2193-2197, Dec. 2018.
doi:10.1109/LAWP.2018.2870863 Google Scholar
46. Murugesan, A. and K. T. Selvan, "On further enhancing the bandwidth of wideband RCS reduction checkerboard metasurfaces using an optimization algorithm," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 7, e22686, 2021.
doi:10.1002/mmce.22686 Google Scholar
47. Paquay, M., J.-C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/TAP.2007.910306 Google Scholar
48. De Cos, M. E., Y. Alvarez-Lopez, and F. L. H. Andres, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402 Google Scholar
49. Fu, Y., Y. Li, and N. Yuan, "Wideband composite AMC surfaces for RCS reduction," Microwave and Optical Technology Letters, Vol. 53, No. 4, 712-715, 2011.
doi:10.1002/mop.25835 Google Scholar
50. Galarregyi, J. C. I., A. T. Pereda, J. L. M. D. Falcon, I. Ederra, R. Gonzalo, and P. D. Maagt, "Broadband radar cross-section reduction using AMC technoogy," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6136-6143, 2013.
doi:10.1109/TAP.2013.2282915 Google Scholar
51. Chen, W., C. A. Balanis, and C. R. Britcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 263-264, Jun. 2015. Google Scholar
52. Chen, W., C. A. Balanis, and R. C. Birtcher, "Dual wide-band checkerboard surfaces for radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 4133-4138, Sept. 2016.
doi:10.1109/TAP.2016.2583505 Google Scholar
53. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, Oct. 2017.
doi:10.1109/TAP.2017.2734069 Google Scholar
54. Sang, D., Q. Chen, L. Ding, M. Guo, and Y. Fu, "Design of checkerboard AMC structure for wideband RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2604-2012, Apr. 2019.
doi:10.1109/TAP.2019.2891657 Google Scholar
55. Kim, S. H. and Y. J. Yoon, "Wideband radar cross-section reduction on checkerboard metasurfaces with surface wave suppression," IEEE Antenna and Wireless Propagation Letters, Vol. 18, No. 5, 896-900, 2019.
doi:10.1109/LAWP.2019.2905012 Google Scholar
56. Su, J., J. Lu, Y. Yang, Z. Li, and J. Song, "A novel checkerboard metasurface based on optimized multielement phase cancellation for superwideband RCS redcution," IEEE Transaction on Antennas and Propagation, Vol. 66, No. 12, 7091-7099, 2018.
doi:10.1109/TAP.2018.2870372 Google Scholar
57. Zaker, R. and A. Sadegnzadeh, "Wideband radar cross section reduction using a noveldesign of artificial magnetic conductor structure with a triple-layer configuration," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 2, e21545, Oct. 2018.
doi:10.1002/mmce.21545 Google Scholar
58. Modi, A. Y., C. A. Balanis, R. C. Britcher, and H. N. Shaman, "New class of RCS reduction metasurfaces based on scattering cancellation array theory," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 298-308, Jan. 2019.
doi:10.1109/TAP.2018.2878641 Google Scholar
59. Murugesan, A., D. Natarajan, and K. T. Selvan, "Low-cost, wideband checkerboard metasurface for monostatic RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 4, 493-497, Apr. 2021.
doi:10.1109/LAWP.2021.3054863 Google Scholar
60. Modi, A. Y., M. A. Alyahya, C. A. Balanis, and R. C. Birtcher, "Metasurface-based method for broadband RCS reduction of dihedral corner reflectors with multiple bounces," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1436-1447, Mar. 2020.
doi:10.1109/TAP.2019.2940494 Google Scholar
61. Chen, W., C. A. Balanis, C. R. Birtcher, and A. Y. Modi, "Cylindrically curved checkerboard surfaces for radar cross-section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 343-346, Feb. 2018.
doi:10.1109/LAWP.2018.2789906 Google Scholar
62. Akbari, M., F. Samadi, A.-R. Sebak, and T. A. Denidni, "Superbroadband diffuse wave scattering based on coding metasurfaces: Polarization conversion metasurfaces," IEEE Antennas and Propagation Magazine, Vol. 61, No. 2, 40-52, Apr. 2019.
doi:10.1109/MAP.2019.2896218 Google Scholar
63. Chen, H., J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, 2014.
doi:10.1063/1.4862166 Google Scholar
64. Jiang, W., Y. Xue, and S.-X. Gong, "Polarization conversion metasurface for broadband radar cross section reduction," Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016.
doi:10.2528/PIERL16060504 Google Scholar
65. Jia, Y., Y. Liu, K. Li, and S.-X. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 179-188, Jan. 2016.
doi:10.1109/TAP.2015.2502981 Google Scholar
66. Sun, H., C. Gu, X. Chen, L. Liu, B. Xu, and Z. Zhou, "Broadband and broad-angle polarization-independent metasurface for radar cross section reduction," Scientific Reports, Vol. 7, Jan. 20, 2017. Google Scholar
67. Jia, Y., Y. Liu, J. Y. Guo, K. Li, and S. Gong, "A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3291-3295, Jun. 2017. Google Scholar
68. Ameri, E., S. H. Esmaeli, and S. H. Sedighy, "Ultra wideband radar cross section reduction by using polarization conversion metasurfaces," Scientific Reports, Vol. 9, Jan. 24, 2019. Google Scholar
69. Yang, J. J., Y. Z. Cheng, C. C. Ge, and R. Z. Gong, "Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction," Materials, Vol. 11, No. 4, 626, 2018. Google Scholar
70. Rajabalipanah, H. and A. Abdolali, "Ultrabroadband monostatic/bistatic RCS reduction via high-entrophy phase-encoded polarization conversion metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1233-1237, Jun. 2019. Google Scholar
71. Dai, H., Y. Zhao, J. Chen, C. Yu, and L. Xing, "Ultra-wideband radar cross-section reduction using polarization conversion metasurface," International Journal of RF and Microwave Computer-Aided Engineering, e22085, Dec. 11, 2019. Google Scholar
72. Fu, C., L. Han, C. Liu, Z. Sun, and X. Lu, "Dual-band polarization conversion metasurface for RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 3044-3049, May 2021. Google Scholar
73. Long, M., W. Jiang, and S. Gong, "Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2534-2537, 2017. Google Scholar
74. Sun, S., W. Jiang, X. Li, P. Liu, and S. Gong, "Ultrawideband high-efficiency 2.5-dimensional polarization conversion metasurface and its application in RCS reduction of antenna," IEEE Antenna and Wireless Propagation Letters, Vol. 18, No. 5, 881-885, 2019. Google Scholar
75. Hong, T., S. Wang, Z. Liu, and S. Gong, "RCS reduction and gain enhancement for the circularly polarized array by polarization conversion metasurface coating," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 167-171, Jan. 2019. Google Scholar
76. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurface," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 326-331, Jan. 2016. Google Scholar
77. Qi, Y., B. Zhang, C. Li, and X. Deng, "Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction," IEEE Access, Vol. 8, 116675-116684, 2010. Google Scholar
78. Giovampaola, C. D. and N. Engheta, "Digital metamaterials," Nature Materials, Vol. 13, 1115-1121, 2014. Google Scholar
79. Cui, T. J., M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science and Applications, Vol. 3, 218, 2014. Google Scholar
80. Liang, L., M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, "Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials," Advanced Optical Materials, 2015. Google Scholar
81. Gao, L.-H., Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, "Broadband diffusion of terahertz waves by multi-bit coding metasurfaces," Light: Science and Applications, Vol. 4, 2015. Google Scholar
82. Liu, S., T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, F. H. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, "Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves," Light: Science and Applications, Vol. 5, 2016. Google Scholar
83. Li, F.-F., W. Fang, P. Chen, Y. Poo, and R.-X. Wu, "Transmission and radar cross-section reduction by combining binary coding metasurface and frequency selective surface," Optics Express, Vol. 26, No. 26, 33878-33887, 2018. Google Scholar
84. Saifullah, Y., A. B. Waqas, G.-M. Yang, F. Zhang, and F. Xu, "4-bit optimized coding metasurface for wideband RCS reduction," IEEE Access, Vol. 7, 122378-122386, 2019. Google Scholar
85. Dai, H., Y. Zhao, H. Li, J. Chen, Z. He, and W. Qi, "An ultra-wide band polarization-independent random coding metasurfaces for RCS reduction," Electronics, Vol. 8, No. 10, 2019. Google Scholar
86. Liu, X., J. Gao, L. Xu, Y. Zhao, X. Cao, and S. Li, "A coding diffuse metasurface for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 724-727, 2016. Google Scholar
87. Yuan, F., G. M. Wang, H. X. Xu, T. Cai, X. J. Zou, and Z. H. Pang, "Broadband RCS reduction based on spiral-coded metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3188-3191, 2017. Google Scholar
88. Yang, J. J., Y. Z. Cheng, D. Qi, and R. Z. Gong, "Study of energy scattering relation and RCS reduction characteristic of matrix-type coding metasurface," Applied Sciences, Vol. 8, No. 8, 2018. Google Scholar
89. Jidi, L., X. Cao, Y. Tang, S.Wang, Y. Zhao, and X. Zhu, "A new coding metasurface for wideband RCS reduction," Radio Engineering, Vol. 27, No. 2, 2018. Google Scholar
90. Wu, G., W. Yu, T. Lin, Y. Deng, and J. Liu, "Ultra-wideband RCS reduction based on non-planar coding diffusive metasurface," Materials, Vol. 13, No. 21, 2020. Google Scholar
91. Chen, K., L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, "Coding metasurface for broadband microwave scattering reduction with optical transparency," Optics Express, Vol. 25, No. 5, 5571-5579, 2017. Google Scholar
92. Swain, R. and R. K. Mishra, "Phase quantized metasurface supercells for wave manipulation and RCS reduction," Progress In Electromagnetics Research M, Vol. 74, 125-135, 2018. Google Scholar
93. Li, X., M. Feng, J. Wang, Y. Meng, J. Yang, T. Liu, R. Zhu, and S. Qu, "Suppressing edge back-scattering of electromagnetic waves using coding metasurface purfle," Frontier in Physics, 2020. Google Scholar
94. Sheng, L. J., L. S. He, and Y. J. Quan, "Actively tunable terahertz coding metasurfaces," Optics Communications, Vol. 461, 2020. Google Scholar
95. Song, J., X. Wu, C. Huang, J. Yang, C. Ji, C. Zhang, and X. Luo, "Broadband and tunable RCS reduction using high-order re ections and salisbury-type absorption mechanisms," Scientific Reports, Vol. 9, 2019. Google Scholar
96. Liu, S. and T. J. Cui, "Flexible controls of terahertz waves using coding and programmable metasurfaces," IEEE Journal of Selected Topics in Quatum Electronics, Vol. 23, No. 4, 1-12, 2017. Google Scholar
97. Yang, H., X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, "A programmable metasurface with dynamic polarization, scattering and focusing control," Scientific Reports, Vol. 6, 2016. Google Scholar
98. Ma, Q., G. D. Bai, H. B. Jing, C. Yang, L. Li, and T. J. Cui, "Smart metasurface with self-adaptively reprogrammable functions," Light: Science & Applications, Vol. 8, 2019. Google Scholar
99. Zhao, J., X. Yang, J. Y. Dai, Q. Cheng, X. Li, N. H. Di, J. C. Ke, G. D. Bai, S. Liu, and S. Jin, "Programmable time-domain digital-coding metasurface for non-linear harmonic manipualtion and new wireless communication systems," National Science Review, Vol. 6, No. 2, 231-238, 2019. Google Scholar
100. Shaltout, A., A. Kildishev, and V. Shalaev, "Time-varying metasurfaces and Lorentz non-reciprocity," Optical Materials Express, Vol. 5, No. 11, 2459-2467, 2015. Google Scholar
101. Liu, M., A. B. Kozyrev, and I. V. Shadrivov, "Time-varying metasurfaces for broadband spectrral camouflage," Phys. Rev. Applied, Vol. 12, No. 5, 054052-054060, 2019. Google Scholar
102. Stewart, S. A., T. J. Smy, and S. Gupta, "Finite-difference time-domain modeling of space-time-modulated metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 281-292, 2018. Google Scholar
103. Liu, Z., Z. Li, and K. Aydin, "Time-varying metasurfaces based on graphene microribbon arrays," ACS Photonics, Vol. 3, No. 11, 2035-2039, 2016. Google Scholar
104. Salary, M. M., S. J. Zanjani, and H. Mosallaei, "Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications," Phys. Rev. B, Vol. 97, No. 11, 115421-115435, 2018. Google Scholar
105. Wang, X. and C. Caloz, "Spread-spectrum selective camouflaging based on time-modualted metasurface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 286-295, 2021. Google Scholar
106. Engheta, N., "Thin absorbing screens using metamaterial surfaces," IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, USA, 2002. Google Scholar
107. Mosallaei, H. and K. Sarabandi, "A one-layer ultra-thin meta-surface absorber," IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 2005. Google Scholar
108. Yang, J. and Z. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 388-391, 2007. Google Scholar
109. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402-207406, 2008. Google Scholar
110. Alici, K. B., F. Bilotti, L. Vegni, and E. Ozbay, "Experimental verification of metamaterial based subwavelength microwave absorbers," Journal of Applied Physics, Vol. 108, No. 8, 2010. Google Scholar
111. Assimonis, A. D., T. M. Kollatou, T. V. Yioultsis, and C. S. Antonopoulos, "Absorbing surfaces using EBG structures," IEEE Transactions on Magnetics, Vol. 50, No. 2, 197-200, 2014. Google Scholar
112. Ghosh, S., S. Bahttacharyya, D. Chaurasiya, and K. V. Srivastava, "An ultrawideband ultrathin metamaterial absorber based on circular split rings," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1172-1175, 2015. Google Scholar
113. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Triple band polarizaion-independent metamaterial absorber with bandwidth enhancement at X-band," Journal of Applied Physics, Vol. 114, No. 9, 2013. Google Scholar
114. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber," IET Microwaves, Antennas & Propagation, Vol. 10, No. 8, 850-855, 2016. Google Scholar
115. Han, Y., L. Zhu, Y. Chang, and B. Li, "Dual-polarized bandpass and band-notched frequency-selective absorbers under multimode resonance," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7449-7454, 2018. Google Scholar
116. Sharma, A., S. Ghosh, and K. V. Srivastava, "A polarization-insensitive band-notched absorber," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 259-263, 2021. Google Scholar
117. Sharma, A., S. Malik, S. Ghosh, and K. V. Srivastava, "A miniaturized band-notched absorber for wideband RCS reduction," 2020 International Symposium on Antennas and Propagation, Osaka, Japan, 2020. Google Scholar
118. Shen, Y., Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, "An extremely wideband and lightweight metamaterial absorber," Journal of Applied Physics, Vol. 117, No. 22, 2015. Google Scholar
119. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 511-514, 2014. Google Scholar
120. Kundu, D., A. Mohan, and A. Chakrabarty, "Design of a conductive FSS based ultrathin absorber using impedance analysis method of equivalent circuit model," IEEE Indian Conference on Antennas and Propagation, 2018. Google Scholar
121. Hossain, M. I., N. Nguyen-Trong, K. H. Sayidmarie, and A. M. Abbosh, "Equivalent circuit design method for wideband nonmagnetic absorbers at low microwave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 12, 8215-8220, 2020. Google Scholar
122. Mishra, R., R. Panwar, and D. Singh, "Equivalent circuit model for the design of frequency-selective, terahertz-band, graphene-based metamaterial absorbers," IEEE Magnetic Letters, Vol. 9, 1-5, 2018. Google Scholar
123. Kern, D. J. and D. H. Werner, "Magnetic loading of EBG AMC ground planes and ultrathin absorbers for improved bandwidth performance and reduced size," Microwave Optical Letters, Vol. 48, No. 12, 2468-2471, 2006. Google Scholar
124. Deng, T., Z.-W. Li, and Z. N. Chen, "Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5886-5894, 2017. Google Scholar
125. Panwar, R., S. Puthucheri, D. Singh, V. Agarwala, and J. R. Lee, "Microwave absorption properties of FSS-impacted composites as a broadband microwave absorber," Advanced Composite Materials, Vol. 26, No. 2, 99-113, 2016. Google Scholar
126. Sui, S., H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, "Absorptive coding metasurface for further radar cross section reduction," Journal of Physics D: Applied Physics, Vol. 51, No. 6, 2018. Google Scholar
127. Mol, L. V. A. and C. K. Anandan, "An ultrathin microwave metamaterial absorber with enhanced bandwidth and angular stability," Journal of Physics Communication, Vol. 1, No. 1, 2017. Google Scholar
128. Huang, H., Z. Shen, and A. A. Omar, "3-D absorptive frequency selective re ector for antenna radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5908-5917, 2017. Google Scholar
129. Shrekenhamer, D., W.-C. Chen, and W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Physical Review Letters, Vol. 110, 2013. Google Scholar
130. Huang, H. and Z. Shen, "Low-RCS reflectarray with phase controllable absorptive frequency-selective reflector," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 190-198, 2019. Google Scholar
131. Wang, Y., K. Chen, Y. Li, and Q. Cao, "Design of nonresonant metasurfaces for broadband RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 346-350, 2021. Google Scholar
132. Koziel, S. and M. Abdullah, "Machine-learning-powered EM-based framework for efficient and reliable design of low scattering metasurfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 4, 2028-2041, 2021. Google Scholar
133. Wong, J. P. S., A. Epstein, and G. V. Eleftheriades, "Reflectionless wide-angle refracting metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1293-1296, 2015. Google Scholar
134. Fathnan, A. A., T. M. Hossain, D. Mahmudin, Y. N. Wijayanto, and A. D. Powell, "Characterization of broadband focusing microwave metasurfaces at oblique incidence," Applied Physics, 1-9, 2020. Google Scholar
135. Haupt, R. L., "Factors that define the bandwidth of a phased array antenna," 2019 IEEE International Symposium on Phased Array System & Technology (PAST), Waltham, MA, USA, 2019. Google Scholar
136. Shaker, J., M. R. Chacharmir, and J. Ethier, Reflectarray Antennas Analysis, Design, Fabrication, and Measurement, Artech House, 2014.
137. Murugesan, A. R. A. N. J. and K. T. Selvan, "Bandwidth enhancement of RCS reduction checkerboard metasurfaces by mutual coupling mitigation," 2021 International Applied Computational Electromagnetics Society (ACES) Symposium, 2021. Google Scholar
138. Murugesan, A. and K. T. Selvan, "Toward improved prediction of RCS reduction bandwidth of checkerboard metasurfaces," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Marina Bay Sands, Singapore, 2021. Google Scholar
139. Xu, G., S. V. Hum, and G. V. Eleftheriades, "Augmented Huygens' metasurfaces employing baffles for precise control of wave transformations," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 6935-6946, 2019. Google Scholar
140. Nadeem, I. and D. Y. Choi, "Study on mutual coupling reduction technique," IEEE Access, Vol. 7, 563-586, 2019. Google Scholar