Search Results(13687)

2013-09-14
PIER Letters
Vol. 43, 45-54
Realization of Miniaturized Quadrature Hybrid Coupler with Reduced Length Branch Arms Using Recursively Loaded Stubs
Rowdra Ghatak , Manimala Pal and Biswajit Sarkar
This paper presents a novel design of miniaturized microstrip quadrature coupler at 2.45 GHz. The design topology is based on reduced transmission line branch arms using recursively loaded stubs that contribute to the compact size. The proposed coupler result in a size reduction of 70.4% when compared to a conventional branch line hybrid. The designed coupler provides, at the operating frequency, a 25 dB isolation and exhibits equal power division at the output ports with quadrature phase difference. A fabricated prototype is developed with simulation and measurement in close agreement.
2013-09-13
PIER C
Vol. 44, 41-53
Integrated Ultra-Wideband Plannar Monopole with Cylindrical Dielectric Resonator Antennas
Yongfeng Wang , Shu Liu , Tayeb Denidni , Qingsheng Zeng and Gao Wei
An ultra-wideband (UWB) planar monopole antenna integrated with a narrow-band (NB) cylindrical dielectric resonator antenna (DRA) is presented. The proposed antenna consists of a UWB monopole excited by a coplanar waveguide (CPW) transmission line, acting as a ground for a DRA excited by a slot. The mode HEM11δ is excited in the NB DRA. To validate the concept of integration, an antenna is fabricated and measured. The measured results demonstrate that the UWB antenna provides a 2:1 voltage standing wave ratio (VSWR) bandwidth for 3.05-11 GHz, integrated with a dual-band NB antenna. Moreover, the two ports have the same polarization and a reasonable isolation (less than -10 dB) between each other. This is a promising candidate for applications in cognitive radio, where the UWB antenna can be used for spectrum sensing and the NB antenna for communication operation.
2013-09-13
PIER C
Vol. 44, 27-40
An Alternative Technique for Estimating the k-Factor from the Phase of the Electromagnetic Field Within a Reverberating Chamber
Antonio Sorrentino , Giuseppe Ferrara , Angelo Gifuni and Maurizio Migliaccio
In this paper, an alternative technique for estimating the Rice factor, K, is applied to the phase of electromagnetic field within a reverberating chamber (RC) for classifying the fading depth on the coherent components in the emulated line-of-sight (LOS) environments. The estimator is time-effective and general, and can be applied for any angle of arrival (AoA) of the received field and for any time varying propagation channel as a complementary method to the classical estimators for evaluating K above all when small but consistent coherent components are present. Measurements accomplished at the RC of the Università di Napoli Parthenope (formerly Istituto Universitario Navale, IUN) confirm the goodness of the proposed technique.
2013-09-13
PIER M
Vol. 33, 17-29
An Improved Model for Estimating Radiated Emissions from a PCB with Attached Cable
Jia Haw Goh , Boon-Kuan Chung , Eng Hock Lim and Sheng-Chyan Lee
Common mode current induced on cable attached to a PCB has been a well-known source of unintentional radiated emissions. The coupling mechanism of the common mode current to the cable can be divided into two types: voltage-driven and current-driven. In voltage-driven mechanism, the common mode current is induced by electric field that couples from traces on PCB to the cable. Previous work showed that these radiated emissions can be estimate based on the self-capacitance of the trace and the signal return plane but the method is only reasonably accurate at lower frequency. This paper develops a model which gives an extended frequency range up to 800 MHz. The formulation for the equivalent common-mode voltage source is improved by taking into account the driving point impedance of the cable which behaves as a wire antenna. The radiated emissions estimated by the improved model match well with the values from 3D electromagnetic simulation of the original PCB with attached cable. It represents an improvement compared to earlier model by 11 dB at 400 MHz to 16 dB at 700 MHz for board size of 10 cm x 16 cm and cable length of 3 m. Similar improvements are obtained for other combinations of board size and cable length. The results show that the cable length is an important factor, in addition to the board area as suggested by earlier work, in determining the magnitude of the equivalent common-mode voltage source. Resonant of the wire antenna affects not only the radiated electromagnetic field but also the commonmode voltage source magnitude due to varying antenna impedances.
2013-09-13
PIER
Vol. 142, 485-503
An Impulse Sampling Approach for Efficient 3D TLM-Based Adjoint Sensitivity Analysis
Osman S. Ahmed , Mohamed H. Bakr and Xun Li
We present a memory efficient algorithm for the estimation of adjoint sensitivities with the transmission line modeling (TLM) method. Our algorithm manipulates the local scattering matrices to drastically reduce the required storage for problems with lossy dielectric discontinuities. Only one impulse per cell is stored for two dimensional simulations and three impulses per cell are stored for three dimensional simulations. The required memory storage for our impulse sampling approach is only 10% of that of the original TLM-based adjoint sensitivity analysis. The technique is illustrated through two examples including the sensitivity analysis of a dielectric resonator antenna.
2013-09-12
PIER C
Vol. 44, 13-26
Compact Microstrip UWB Bandpass Filter with Triple-Notched Bands
Jian Wang , Junding Zhao and Jia-Lin Li
A new microstrip ultra-wideband (UWB) bandpass filter (BPF) with triple-notched bands is presented in this paper. The circuit topology and its corresponding electrical parameters of the initial microstrip UWB BPF are desired by a variation of genetic algorithm (VGA). Then, triple-notched bands inside the UWB passband are implemented by coupling a square ring short stub loaded resonator (SRSSLR) to the main transmission line of the initial microstrip UWB BPF. The triple-notched bands can be easily generated and set at any desired frequencies by varying the designed parameters of SRSSLR. For verification, a microstrip UWB BPF with triple-notched bands respectively centered at frequencies of 4.3 GHz, 5.8 GHz, and 8.1 GHz is designed and fabricated. Simulated and experimental results are in good agreement.
2013-09-12
PIER C
Vol. 44, 1-11
Non-Uniform Transmission Line Ultra-Wideband Wilkinson Power Divider
Khair Al Shamaileh , Mohammad Almalkawi , Vijay K. Devabhaktuni , Nihad I. Dib , Bassem Henin and Amin M. Abbosh
We propose a technique with clear guidelines to design a compact planar Wilkinson power divider (WPD) for ultra-wideband (UWB) applications. The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional power divider with varyingimpedance profiles governed by a truncated Fourier series. Such non-uniform transmission lines (NTLs) are obtained through the even mode analysis, whereas three isolation resistors are optimized in the odd mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. For verification purposes, an in-phase equal split WPD is designed, simulated, and measured. Simulation and measurement results show that the input and output ports matching as well as the isolation are below -10 dB, whereas the transmission parameters are in the range of (-3.2 dB, -4.2 dB) across the 3.1 GHz-10.6 GHz band.
2013-09-12
PIER M
Vol. 33, 1-15
MOEA/d-GO for Fragmented Antenna Design
Da-Wei Ding and Gang Wang
In this paper, a hybrid multiobjective evolutionary algorithm, MOEA/D-GO (Multiobjective Evolutionary Algorithm Based on Decomposition combined with Enhanced Genetic Operators), is proposed for fragment-type antenna design. It combines the ability and efficiency of MOEA/D to deal with multiobjective optimization problems with the speci c character of two-dimensional chromosome coding of genetic algorithm. And enhanced genetic operators are also introduced to generate new individuals. Numerical results of a set of six multiobjective 0/1 knapsack problems show that MOEA/D-GO with weighted sum decomposition approach outperforms original MOEA/D and MOEA/D-PR (MOEA/D combined with Path-Relinking operator). Then it's applied to optimize a CPW-fed monopole antenna to achieve band-notch characteristic. Both numerical and test results show that MOEA/D-GO is promising for solving multiobjective optimization problems about fragmented antenna.
2013-09-11
PIER Letters
Vol. 43, 35-43
Required Number of OTA Antennas in the Multi-Probe Test System
Xiaoming Chen
The number of OTA antennas of the multi-probe over-the-air (OTA) test system should be large enough for accurate OTA testing yet not too large due to the increasing cost. In this work, the required number of OTA antennas is studied using the spatial correlation function. Some key issues are discussed.
2013-09-11
PIER Letters
Vol. 43, 25-34
Wideband Monopole Antenna Based on CRLH for Mobile Applications
Min Jie Hua , Peng Wang , You Zheng , Hao Qin , Yuanfu Liu , Shuanglin Yuan and Jiaxuan Liao
In this paper, we present a wideband monopole antenna loaded with Composite Right Left Hand (CRLH) unit cell for mobile applications. By loading one CRLH unit cell, the monopole antenna can achieve wideband and generate an additional resonant mode much lower than the unloaded antenna's normal frequency. The antenna has a compact size of 0.1λ0×0.15λ0 at the lowest resonance frequency. Measured impedance bandwidth is 2000 MHz (1710~3810 MHz), which can cover one more frequency band for WiMAX applications than conventional antenna. Furthermore, it introduces a narrow band for LTE 700 applications. Stable omni-directional radiation patterns make it suitable for mobile terminals.
2013-09-11
PIER Letters
Vol. 43, 15-23
A Compact C-Shaped Printed UWB Antenna with Band-Notched Characteristic
Jiawei Zang and Xuetian Wang
A compact printed ultra-wideband (UWB) antenna with band-notched characteristic is proposed. The presented antenna consists of a modified ground plane structure and a novel C-shaped radiation patch fed by a microstrip line. By etching a C-shaped slot in the radiating patch, the notched band of 3.3-3.8 GHz for WiMAX is generated. The notched band can be easily tuned by controlling the size of the slot. The measured results show that the proposed antenna operates over a wide bandwidth from 3 GHz to 16 GHz with return loss less than -10, except a stop-band of 3.3-3.8 GHz. Some key parameters of the antenna are discussed in details. The time-domain characteristics are given.
2013-09-11
PIER
Vol. 142, 463-483
Full-Vectorial Parallel Finite-Element Contrast Source Inversion Method
Amer Zakaria , Ian Jeffrey , Joe LoVetri and Amer Zakaria
The multiplicatively regularized finite-element contrast source inversion algorithm (MR-FEM-CSI) is used to solve the full-vectorial three-dimensional (3D) inverse scattering problem. The contrast and contrast-source optimization variables are located at the centroids of tetrahedra within the problem domain; whereas the electric field is expanded in terms of edge basis functions on the same tetrahedra. A dual-mesh is created in order to apply the multiplicative regularization. To handle large-scale problems the inversion algorithm is parallelized using the MPI library, with sparse matrix and vector computations supported by PETSc. The algorithm is tested using experimental datasets obtained from the Institut Fresnel database. A synthetic example shows that the technique is able to successfully image moisture hot-spots within a partially lled grain bin.
2013-09-11
PIER
Vol. 142, 437-462
Dipole Radiation Near Anisotropic Low-Permittivity Media (Invited Paper)
Mohammad Memarian and George Eleftheriades
We investigate radiation of a dipole at or below the interface of (an)isotropic Epsilon Near Zero (ENZ) media, akin to the classic problem of a dipole above a dielectric half-space. To this end, the radiation patterns of dipoles at the interface of air and a general anisotropic medium (or immersed inside the medium) are derived using the Lorentz reciprocity method. By using an ENZ halfspace, air takes on the role of the denser medium. Thus we obtain shaped radiation patterns in air which were only previously attainable inside the dielectric half-space. We then follow the early work of Collin on anisotropic artificial dielectrics which readily enables the implementation of practical anisotropic ENZs by simply stacking sub-wavelength periodic bi-layers of metal and dielectric at optical frequencies. We show that when such a realistic anisotropic ENZ has a low longitudinal permittivity, the desired shaped radiation patterns are achieved in air. In such cases the radiation is also much stronger in air than in the ENZ media, as air is the denser medium. Moreover, we investigate the subtle differences of the dipolar patterns when the anisotropic ENZ dispersion is either elliptic or hyperbolic.
2013-09-11
PIER
Vol. 142, 423-435
Vertical Cascaded Planar EBG Structure for SSN Suppression
Ling-Feng Shi and Hong-Feng Jiang
A novel vertical cascaded planar electromagnetic bandgap (EBG) structure is proposed for SSN suppression with the ultra-wideband at the restraining depth of -30 dB by analyzing the simultaneous switching noise (SSN) suppression mechanism and the equivalent circuit model for EBG structure. Moreover, the SSN suppression bandwidth can be broadened by using different novel EBG structures required by vertically cascading different planar EBG structures. In addition, the structure is verified to meet signal integrity (SI) by the time-domain simulation. The tested results show that the presented EBG is accordant to the simulated results of the theory method by the vector network analyzer. The proposed structures provide a new designing method for EBG structures to improve the ability of suppressing SSN.
2013-09-10
PIER Letters
Vol. 43, 1-14
First-Order Perturbation Approach to Transformer Winding Deformations
Mariana Dalarsson and Martin Norgren
An on-line method to detect radial mechanical deformations of power transformer winding turns is presented. First-order perturbation theory is applied to a transformer winding surrounded by the transformer tank wall and the iron core. The transformer winding is modeled as thin conducting cylindrical rings (winding segments or turns) situated within a coaxial waveguide, where the outer conducting cylinder represents the transformer tank wall while the inner conducting cylinder represents the iron core. Antennas which radiate and measure microwave fields are proposed inside the transformer tank in order to identify and quantify the mechanical deformations of winding turns. The direct propagation problem is solved using conventional waveguide theory with mode-matching and cascading techniques. An optimization algorithm is then used to solve the inverse problem whereby a good agreement between the reconstructed and true deformations of the winding segments is obtained.
2013-09-10
PIER Letters
Vol. 42, 209-223
Numerical Simulation of Gold Nanostructure Absorption Efficiency for Fiber-Optic Photoacoustic Generation
Ye Tian , Hamzeh Jaradat , Nan Wu , Xiaotian Zou , Yang Zhang , Yuqian Liu , Alkim Akyurtlu , Chengyu Cao and Xingwei Wang
In many non-destructive testing and medical diagnostic applications, photoacoustic generation by optical fiber is an effective approach to meet the requirements of broad bandwidth and compact size. The energy absorption layer coated onto the fiber endface plays an important role in the conversion of laser energy into heat used to excite acoustic waves. Gold nanostructures are promising solutions to be utilized as energy absorption layers due to their capability of absorbing maximum optical energy at plasmon resonant frequencies. The appropriate selection of the organization and dimensions of the gold nanostructures is the key to achieving high absorption efficiency. Numerical modeling is an efficient way to predict the behavior of the system as a variation of select parameters. A 3D finite integral technique model was established to simulate the dependency of absorption efficiency on the organization and dimensions of the gold nanospheres and nanorods. The simulation results provided practical clues to the design and fabrication of fiber-optic photoacoustic generators.
2013-09-10
PIER Letters
Vol. 42, 201-208
Compact Ultra-Wideband Bandpass Filter with Sharp Attenuation Using Modified Composite Right/Left-Handed Transmission Lines
Gyuje Sung and Young Kim
In this paper, the characteristics of novel modified composite right/left-handed (CRLH) transmission lines are discussed, and an ultra-wideband (UWB) bandpass filter (BPF) using the modified CRLH transmission lines is presented. Design formulas of a novel modified CRLH unit cell are theoretically derived. Based on the design formulas, the UWB bandpass filter with three unit cells is designed, fabricated, and measured. The measurement results show that the UWB bandpass filter has an insertion loss of less than 1 dB, bandwidths of 2.9~4.9 GHz, and a rejection of greater than 50 dB at 5.8 GHz.
2013-09-10
PIER
Vol. 142, 409-422
Radio Interface Design for Inkjet-Printed Biosensor Applications
Janne Jalo , Hannu P. Sillanpaa and Riku M. Makinen
Biomedical wireless sensors require thin, lightweight, and flexible single-layer structures operating in immediate proximity of human body. This poses a challenge for RF and antenna design required for wireless operation. In this work, the radio interface design for a 2.4 GHz wireless sensor including a discrete filter balun circuit and an antenna operating at 0.3 mm distance from the body is presented. Thin, lightweight single-layer structure is realized using printed electronics manufacturing technology. The RF and antenna designs are validated by measurements, and a sensor with a fully functional radio interface is implemented and verified. At 0.3 mm from the body, 2.4 dB insertion loss and -10 dBi realized gain at 2.4 GHz were achieved for a discrete lter balun and antenna, respectively. The received power level on a Bluetooth low energy (BLE) channel was above -80 dBm at 1 m distance from the body, indicating capability for short-range off-body communications. The paper also provides guidelines for printed electronics RF and antenna design for on-body operation.
2013-09-09
PIER C
Vol. 43, 255-269
Superdirective Beamforming with Interferences and Noise Suppression via Second-Order Cone Programming
Qing-Chen Zhou , Huotao Gao , Huajun Zhang and Lin Zhou
Based on second-order cone programming, we present a new superdirective beamforming method with interferences and noise suppression for small aperture HF receive arrays. In the novel method, low side lobe level (SLL) and nulls are not only used to suppress interferences and noise, but also play an important part in overcoming the low array efficiency brought by superdirective beamforming. According to the actual condition, the new method can present a good tradeoff between directive gain, array efficiency, SLL, nulls and robustness against array uncertainty. Compared with the existing methods, it is more effective in suppressing interference and noise. The superiority and validity of the proposed method can be illustrated by numerical results.
2013-09-09
PIER C
Vol. 43, 247-254
A Varactor-Tunable High Impedance Surface for Active Metamaterial Absorber
Baoqin Lin , Shao-Hong Zhao , Qiu-Rong Zheng , Meng Zhu , Fan Li and Heng-Yang Zhang
One varactor-tunable High Impedance Surface (HIS) is proposed and used in design of an active metamaterial absorber. The proposed HIS structure is based on mushroom-type HIS, in which varactors are introduced to adjust the effective capacitance and tune the resonance frequency. The primary ground plane is etched as the bias network for these loaded varactors, and another ultra-thin grounded sheet is attached to the bottom. In addition, the absorbing characteristics are introduced for dielectric loss to construct an active metamaterial absorber. Numerical simulations show that a wide tuning range can be achieved by adjusting the varactor capacitance, and effective absorption is realized at different states. Two identical absorbers, which are loaded with fixed-value chap capacitors of different capacitances, are fabricated and measured using a waveguide measurement setup. Excellent agreement between the simulated and measured results is demonstrated.