Department of Electrical and Computer Engineering
University of Massachusetts Lowell
USA
HomepageDepartment of Biomedical Engineering and Biotechnology
University of Massachusetts Lowell
USA
HomepageDepartment of Electrical and Computer Engineering
University of Massachusetts Lowell
USA
HomepageDepartment of Electrical and Computer Engineering
University of Massachusetts
USA
HomepageDepartment of Electrical and Computer Engineering
University of Massachusetts Lowell
USA
Homepage1. Sposito, G., C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, "A review of non-destructive techniques for the detection of creep damage in power plant steels," NDT & E Int., Vol. 43, No. 7, 555-567, 2010.
doi:10.1016/j.ndteint.2010.05.012 Google Scholar
2. Harrison, T., J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, "Combined photoacoustic and ultrasound biomicroscopy," Opt. Express, Vol. 17, No. 24, 22041-22046, 2009.
doi:10.1364/OE.17.022041 Google Scholar
3. Foster, F. S., J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, "A new 15-50MHz array-based micro-ultrasound scanner for preclinical imaging," Ultrasound Med. Biol., Vol. 35, No. 10, 1700-1708, 2009.
doi:10.1016/j.ultrasmedbio.2009.04.012 Google Scholar
4. Fomitchov, P. A., A. K. Kromine, and S. Krishnaswamy, "Photoacoustic probes for nondestructive testing and biomedical applications," Appl. Opt., Vol. 41, No. 22, 4451-4459, 2002.
doi:10.1364/AO.41.004451 Google Scholar
5. Hou, Y., J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O'Donnell, "Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging," IEEE Trans. Ultrason., Ferroelectr., Freq. Control., Vol. 55, No. 8, 1867-1877, 2008.
doi:10.1109/TUFFC.2008.870 Google Scholar
6. Biagi, E., F. Margheri, and D. Menichelli, "E±cient laser-ultrasound generation by using heavily absorbing films as targets," IEEE Trans. Ultrason., Ferroelectr., Freq. Control., Vol. 48, No. 6, 1669-1680, 2001.
doi:10.1109/58.971720 Google Scholar
7. Hou, Y., J.-S. Kim, S. Ashkenazi, M. O'Donnell, and L. J. Guo, "Optical generation of high frequency ultrasound using two-dimensional gold nanostructure," Appl. Phys. Lett., Vol. 89, No. 9, 093901, 2006.
doi:10.1063/1.2344929 Google Scholar
8. Tian, Y., N. Wu, K. Sun, X. Zou, and X. Wang, "Numerical simulation of fiber-optic photoacoustic generator using nanocomposite materials," J. Comput. Acoust., Vol. 21, No. 2, 1350002, 2003.
doi:10.1142/S0218396X13500021 Google Scholar
9. Hou, Y., J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O'Donnell, "Broadband all-optical ultrasound transducers," Appl. Phys. Lett., Vol. 91, No. 7, 073507, 2007.
doi:10.1063/1.2771058 Google Scholar
10. Jain, P. K., K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B., Vol. 110, No. 14, 7238-7248, 2006.
doi:10.1021/jp057170o Google Scholar
11. Yang, X., E. W. Stein, S. Ashkenazi, and L. V. Wang, "Nanoparticles for photoacoustic imaging," Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., Vol. 1, No. 4, 360-368, 2009.
doi:10.1002/wnan.42 Google Scholar
12. Wu, N., Y. Tian, X. Zou, V. Silva, A. Chery, and X. Wang, "High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite ," J. Opt. Soc. Am. B, Vol. 29, No. 8, 2016-2020, 2012.
doi:10.1364/JOSAB.29.002016 Google Scholar
13. Gong, Y., K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER11121903 Google Scholar
14. Temple, T. L. and D. M. Bagnall, "Optical properties of gold and aluminium nanoparticles for silicon solar cell applications," J. Appl. Phys., Vol. 109, No. 8, 084343, 2011.
doi:10.1063/1.3574657 Google Scholar
15. Nguyen, H., F. Sidiroglou, S. F. Collins, G. W. Baxter, A. Roberts, and T. J. Davis, "Periodic array of nanoholes on gold-coated optical ¯ber end-faces for surface plasmon resonance liquid refractive index sensing," Proc. SPIE, Vol. 8351, 835128, 2012. Google Scholar
16. Tian, Y., N. Wu, X. Zou, H. Felemban, C. Cao, and X. Wang, "Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam," Opt. Eng., Vol. 52, No. 6, 065005, 2013.
doi:10.1117/1.OE.52.6.065005 Google Scholar
17. Mie, G., "Contributions of the optics of turbid media, particularly of colloidal metal solutions," Ann. Phys., Vol. 25, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302 Google Scholar
18. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York, 1983B.
19. Handapangoda, C. C., M. Premaratne, and P. N. Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011. Google Scholar
20. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491 Google Scholar
21. Kim, S., Y. Jung, G. H. Gu, J. S. Suh, S. M. Park, and S. Ryu, "Discrete dipole approximation calculations of optical properties of silver nanorod arrays in porous anodic alumina," J. Phys. Chem. C., Vol. 113, No. 37, 16321-16328, 2009.
doi:10.1021/jp811516s Google Scholar
22. Kane, Y., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE T. Antenn. Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
23. Jiang, H., J. Sabarinathan, T. Manifar, and S. Mittler, "3-D FDTD analysis of gold-nanoparticle-based photonic crystal on slab waveguide," J. Lightwave Technol., Vol. 27, No. 13, 2264-2270, 2009.
doi:10.1109/JLT.2008.2006577 Google Scholar
24. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," Int. J. Numer. Model. El., Vol. 9, No. 4, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 Google Scholar
25. Wang, Z. B., B. S. Luk'yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, "The influences of particle number on hot spots in strongly coupled metal nanoparticles chain," J. Chem. Phys., Vol. 128, No. 9, 094705-5, 2008.
doi:10.1063/1.2835598 Google Scholar
26. Johnson, P. B. and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar
27. Shulz, L. G., "The optical constants of silver, gold, copper and aluminum. I. The absorption coefficient k. And II. the index of refraction n," J. Opt. Soc. Am. A, Vol. 44, No. 5, 357-362, 362-367, 1954. Google Scholar
28. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt., Vol. 22, No. 7, 1099-1119, 1983.
doi:10.1364/AO.22.001099 Google Scholar
29. CST Microwave Studio 2010, (http://www.cst.com/Content/Products/MWS/Overview.aspx).