1. Marler, R. T. and J. S. Arora, "Survey of multiobjective optimization methods for engineering," Structural Multidisciplinary Opt., Vol. 26, No. 6, 369-395, 2004.
doi:10.1007/s00158-003-0368-6 Google Scholar
2. Jin, Z. S., H. Yang, X. J. Tang, and J. J. Mao, "Parameters and schemes selection in the optimization of the fragment-type tag antenna," 2010 Third International Joint Conference on Computational Science and Optimization (CSO), Vol. 2, 259-262, Huangshan, China, 2010.
doi:10.1109/CSO.2010.100 Google Scholar
3. Kim, G. J. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," IEEE Antennas and Propagation Society International Symposium 2006, 2087-2090, Albuquerque, NM, 2006. Google Scholar
4. Jon, M. and M. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas and Wireless Propagation Letters 2006, Vol. 6, 447-449, 2007.
doi:10.1109/LAWP.2007.891962 Google Scholar
5. Herscovici, N., J. Ginn, T. Donisi, and B. Tomasic, "A fragmented aperture-coupled microstrip antenna," IEEE Antennas and Propagation Society International Symposium 2008, 1-4, San Diego, 2008. Google Scholar
6. Thors, B., H. Steyskal, and H. Holter, "Broad-band fragmented aperture phased array element design using genetic algorithms," IEEE Trans. on Antennas and Propag., Vol. 53, No. 10, 3280-3287, 2005.
doi:10.1109/TAP.2005.856340 Google Scholar
7. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. on Antennas Propag., Vol. 52, No. 6, 1434-1445, 2004.
doi:10.1109/TAP.2004.825648 Google Scholar
8. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Trans. on Antennas and Propag., Vol. 52, No. 11, 2925-2931, 2004.
doi:10.1109/TAP.2004.835289 Google Scholar
9. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Trans. on Antennas and Propag., Vol. 53, No. 6, 1939-1945, 2005.
doi:10.1109/TAP.2005.848461 Google Scholar
10. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Minimization of a rectangular patch using genetic algorithms," IEEE Antennas and Propagation Society Intelnational Symposium, Vol. 4, 1-4, Boston, MA, 2001. Google Scholar
11. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electronics Letters, Vol. 36, No. 25, 2057-2058, 2000.
doi:10.1049/el:20001452 Google Scholar
12. Wang, X. P. and L. M. Cao, Genetic Algorithms-theory, Application and Program Realization, University of Xi'an Jiao Tong Press, Xi'an, 2002.
13. Kerkhoff, A. J., "Multi-objective optimization of antennas for ultra-wideband applications,", The University of Texas at Austin, May 2008. Google Scholar
14. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. on Evol. Comput., Vol. 11, No. 6, 712-731, 2007.
doi:10.1109/TEVC.2007.892759 Google Scholar
15. Li, H. and H. Zhang, "Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II," IEEE Trans. on Evol. Comput., Vol. 13, No. 2, 284-302, 2009.
doi:10.1109/TEVC.2008.925798 Google Scholar
16. Ishibuchi, H., Y. Sakane, N. Tsukamoto, and Y. Nojima, "Evolutionary many-objective optimization by NSGA-II and MOEA/D with large population," Proc. 2009 Int. Conf. Systems, Man, and Cybernetics, San Autonio, 1758-1763, San Antonio, TX, 2009. Google Scholar
17. Kafafy, A., A. Bounekkar, and S. Bonnevay, "Hybrid metaheuristics based on MOEA/D for 0/1 multiobjective knapsack problems: A comparative study," 2012 IEEE Congress on Evolutionary Computation (CEC), Vol. 1, No. 8, 10-15, 2012. Google Scholar
18. Ding, D., H. Wang, and G. Wang, "Evolutionary computation of multi-band antenna using multi-objective evolutionary algorithm based on decomposition," Lecture Notes in Computer Science (2011 LNCS), Vol. 7030, 383-390, 2011.
doi:10.1007/978-3-642-25255-6_49 Google Scholar
19. Ding, D. and G. Wang, "Modified multiobjective evolutionary algorithm based on decomposition for antenna design," IEEE Trans. on Antennas and Propag., Vol. PP, No. 99, 2013. Google Scholar
20. Carvalho, R., R. R. Saldanha, B. N. Gomes, A. C. Lisboa, and A. X. Martins, "A multi-objective evolutionary algorithm based on decomposition for optimal design of Yagi-Uda antennas," IEEE Trans. on Magnetics, Vol. 48, No. 2, 803-806, 2012.
doi:10.1109/TMAG.2011.2174348 Google Scholar
21. Pal, S., B. Y. Qu, S. Das, and P. N. Suganthan, "Optimal synthesis of linear antenna arrays with multiobjective differential evolution," Progress In Electromagnetics Research B, Vol. 21, 87-111, 2010. Google Scholar
22. Zitzler, E. and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Trans. on Evol. Comput., Vol. 3, No. 4, 257-271, 1999.
doi:10.1109/4235.797969 Google Scholar
23. Jaszkiewicz, A., "On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - A comparative exper iment," IEEE Trans. on Evol. Comput., Vol. 6, No. 4, 402-412, 2002.
doi:10.1109/TEVC.2002.802873 Google Scholar
24. Tong, W. and Z. R. Hu, "A CWP fed circular monopole antenna for ultra wideband wireless communications," IEEE Antennas and Propagation Society International Symposium 2005, Vol. 3A, 528-531, 2005.
doi:10.1109/APS.2005.1552304 Google Scholar