Vol. 43
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-09-10
First-Order Perturbation Approach to Transformer Winding Deformations
By
Progress In Electromagnetics Research Letters, Vol. 43, 1-14, 2013
Abstract
An on-line method to detect radial mechanical deformations of power transformer winding turns is presented. First-order perturbation theory is applied to a transformer winding surrounded by the transformer tank wall and the iron core. The transformer winding is modeled as thin conducting cylindrical rings (winding segments or turns) situated within a coaxial waveguide, where the outer conducting cylinder represents the transformer tank wall while the inner conducting cylinder represents the iron core. Antennas which radiate and measure microwave fields are proposed inside the transformer tank in order to identify and quantify the mechanical deformations of winding turns. The direct propagation problem is solved using conventional waveguide theory with mode-matching and cascading techniques. An optimization algorithm is then used to solve the inverse problem whereby a good agreement between the reconstructed and true deformations of the winding segments is obtained.
Citation
Mariana Dalarsson, and Martin Norgren, "First-Order Perturbation Approach to Transformer Winding Deformations," Progress In Electromagnetics Research Letters, Vol. 43, 1-14, 2013.
doi:10.2528/PIERL13072307
References

1. Mackenzie, E. A., J. Crossey, A. de Pablo, and W. Ferguson, "On-line monitoring and diagnostics for power transformers," Conference Record of the 2010 IEEE International Symposium on Electrical Insulation (ISEI), 1-5, San Diego, CA, June 6-9, 2010.

2. Vaessen, P. T. M. and E. Hanique, "A new frequency response analysis method for power transformers," IEEE Transactions on Power Delivery, Vol. 7, No. 1, 384-391, January 1992.
doi:10.1109/61.108932

3. Shao, Y., Z. Rao, and Z. Jin, "Online state diagnosis of transformer windings based on time-frequency analysis," WSEAS Transactions on Circuits and Systems, Vol. 8, No. 2, 227-236, February 2009.

4. Abeywickrama, N., Y. V. Serdyuk, and S. M. Gubanski, "High-frequency modeling of power transformers for use in frequency response analysis (FRA)," IEEE Transactions on Power Delivery, Vol. 23, No. 4, 2042-2049, 2008.
doi:10.1109/TPWRD.2008.917896

5. Dalarsson, M., A. Motevasselian, and M. Norgren, "On using multiple modes to reconstruct conductor locations in a power transformer winding," PIERS Proceedings, 516-523, Kuala Lumpur, Malaysia, March 27-30, 2012.

6. Dalarsson, M., A. Motevasselian, and M. Norgren, "Using multiple modes to reconstruct conductor locations in a cylindrical model of a power transformer winding," International Journal of Applied Electromagnetics and Mechanics, Vol. 41, No. 3, 279-291, 2013.

7. Myska, R. and P. Drexler, "Simulation and verification of methods for partial discharge source localization," PIERS Proceedings, 704-708, Kuala Lumpur, Malaysia, March 27-30, 2012.

8. Colton, D. and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Springer, Berlin, 1992.

9. Masterman, P. H. and P. J. B. Clarricoats, "Computer field-matching solution of waveguide transverse discontinuities," Proc. IEEE, Vol. 118, 51-63, 1971.

10. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, New York, 1999.

11. Schelkunoff, S. A., Electromagnetic Waves,, D. Van Nostrand Company, Inc., New York, 1943.

12. ABB Transformer Handbook, 2004.

13. Li, Y., G. Liu, L. Zhang, L. Zhang, and Z. Lin, "Transformer winding deformation diagnosis using middle band frequency response analysis," 2007 International Conference on Solid Dielectrics, 677-680, Winchester, UK, July 8-13, 2007.

14. Omar , A. and K. Schonemann, "Transmission matrix representation of finline discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, 765-770, 1985.
doi:10.1109/TMTT.1985.1133124