1. Sommerfeld, A., "Uber die ausbreitung der wellen in der drahtlosen telegraphie," Annalen der Physik, Vol. 333, No. 4, 665-736, 1909. Google Scholar
2. Norton, K., "The propagation of radio waves over the surface of the earth and in the upper atmosphere," Proceedings of the Institute of Radio Engineers, Vol. 24, No. 10, 1367-1387, 1936. Google Scholar
3. Felsen, L., "Radiation from a uniaxially anisotropic plasma half space," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 4, 469-484, 1963. Google Scholar
4. Kong, J., "Electromagnetic fields due to dipole antennas over stratified anisotropic media," Geophysics, Vol. 37, No. 6, 985-996, 1972. Google Scholar
5. Lukosz, W. and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power," J. Opt. Soc. Am., Vol. 67, No. 12, 1607-1615, 1977. Google Scholar
6. Lukosz, W. and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles," J. Opt. Soc. Am., Vol. 67, No. 12, 1615-1619, 1977. Google Scholar
7. Lukosz, W., "Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation," J. Opt. Soc. Am., Vol. 69, No. 11, 1495-1503, 1979. Google Scholar
8. King, R. and G. Smith, Antennas in Matter: Fundamentals, Theory and Applications, MIT Press, Cambridge, MA, 1981.
9. Brewitt-Taylor, C., D. Gunton, and H. Rees, "Planar antennas on a dielectric surface," Electronics Letters, Vol. 17, No. 20, 729-731, 1981. Google Scholar
10. Rahmat-Samii, Y., R. Mittra, and P. Parhami, "Evaluation of sommerfeld integrals for lossy half-space problems," Electromagnetics, Vol. 1, No. 1, 1-28, 1981. Google Scholar
11. Engheta, N., C. H. Papas, and C. Elachi, "Radiation patterns of interfacial dipole antennas," Radio Science, Vol. 17, No. 6, 1557-1566, 1982. Google Scholar
12. Rutledge, D. and M. Muha, "Imaging antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 4, 535-540, 1982. Google Scholar
13. Smith, G., "Directive properties of antennas for transmission into a material half-space," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 232-246, 1984. Google Scholar
14. Engheta, N., C. Papas, and C. Elachi, "Interface extinction and subsurface peaking of the radiation pattern of a line source," Applied Physics B, Vol. 26, No. 4, 231-238, 1981. Google Scholar
15. Valle, S., L. Zanzi, M. Sgheiz, G. Lenzi, and J. Friborg, "Ground penetrating radar antennas: Theoretical and experimental directivity functions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 4, 749-759, 2001. Google Scholar
16. Radzevicius, S. J., C.-C. Chen, L. Peters, Jr., and J. J. Daniels, "Nearfield dipole radiation dynamics through FDTD modeling," Journal of Applied Geophysics, Vol. 52, No. 23, 75-91, 2003. Google Scholar
17. Sarabandi, K., M. D. Casciato, and I.-S. Koh, "Efficient calculation of the fields of a dipole radiating above an impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1222-1235, 2002. Google Scholar
18. Xu, X.-B. and Y. Huang, "An efficient analysis of vertical dipole antennas above a lossy half-space," Progress In Electromagnetics Research, Vol. 74, 353-377, 2007. Google Scholar
19. Firouzeh, Z. H., G. A. Vandenbosch, R. Moini, S. H. H. Sadeghi, and R. Faraji-Dana, "Efficient evaluation of Green's functions for lossy half-space problems," Progress In Electromagnetics Research, Vol. 109, 139-157, 2010. Google Scholar
20. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010. Google Scholar
21. Luan, L., P. R. Sievert, and J. B. Ketterson, "Near-field and farfield electric dipole radiation in the vicinity of a planar dielectric half space," New Journal of Physics, Vol. 8, No. 11, 264, 2006. Google Scholar
22. Felsen, L., "Lateral waves on an anisotropic plasma interface," IRE Transactions on Antennas and Propagation, Vol. 10, No. 3, 347-349, 1962. Google Scholar
23. Shavit, R. and E. Rosen, "Lateral wave contribution to the radiation from a dielectric half medium," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 7, 751-755, 1995. Google Scholar
24. Rafi, G. Z., R. Moini-Mazandaran, and R. Faraji-Dana, "A new time domain approach for analysis of vertical magnetic dipole radiation in front of lossy half-space," Progress In Electromagnetics Research, Vol. 29, 57-68, 2000. Google Scholar
25. Tsalamengas, J. and N. Uzunoglu, "Radiation from a dipole near a general anisotropic layer," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 1, 9-16, 1990. Google Scholar
26. Saarinen, J. J. and J. E. Sipe, "A Green function approach to surface optics in anisotropic media," Journal of Modern Optics, Vol. 55, No. 1, 13-32, 2008. Google Scholar
27. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007. Google Scholar
28. Memarian, M. and G. V. Eleftheriades, "Radiation of dipoles at the interface of low permittivity media," Proc. IEEE International Symp. on Antennas and Propagation, 2013.
29. Collin, R. E., "A simple artificial anisotropic dielectric medium," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 206-209, 1958. Google Scholar
30. Collin, R. E., Field Theory of Guided Waves, IEEE Press Series on Electromagnetic Wave Theory, Wiley, 1990.
31. Enoch, S., G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002. Google Scholar
32. Salandrino, A. and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B, Vol. 74, 075103, 2006. Google Scholar
33. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, No. 18, 8247-8256, 2006. Google Scholar
34. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, No. 5819, 1686, 2007. Google Scholar
35. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Phys. Rev. B, Vol. 79, 245127, 2009. Google Scholar
36. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, No. 6130, 286-287, 2013. Google Scholar
37. Elser, J., V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Applied Physics Letters, Vol. 90, No. 19, 191109, 2007. Google Scholar
38. Orlov, A. A., P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, "Engineered optical nonlocality in nanostructured metamaterials," Phys. Rev. B, Vol. 84, 045424, 2011. Google Scholar
39. Chebykin, A. V., A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, "Nonlocal effective medium model for multilayered metal-dielectric metamaterials," Phys. Rev. B, Vol. 84, 115438, 2011. Google Scholar
40. Chebykin, A. V., A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, "Nonlocal effective parameters of multilayered metaldielectric metamaterials," Phys. Rev. B, Vol. 86, 115420, 2012. Google Scholar
41. Naik, G. V., J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, "Demonstration of Al : ZnO as a plasmonic component for near-infrared metamaterials," Proceedings of the National Academy of Sciences, Vol. 109, No. 23, 8834-8838, 2012.
42. Chern, R.-L., "Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials," Opt. Express, Vol. 21, No. 14, 16514-16527, 2013. Google Scholar
43. Alù, A. and N. Engheta, "Extremely anisotropic boundary conditions and their optical applications," Radio Science, Vol. 46, No. 5, 1-8, 2011. Google Scholar