Vol. 142
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-11
Dipole Radiation Near Anisotropic Low-Permittivity Media (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 142, 437-462, 2013
Abstract
We investigate radiation of a dipole at or below the interface of (an)isotropic Epsilon Near Zero (ENZ) media, akin to the classic problem of a dipole above a dielectric half-space. To this end, the radiation patterns of dipoles at the interface of air and a general anisotropic medium (or immersed inside the medium) are derived using the Lorentz reciprocity method. By using an ENZ halfspace, air takes on the role of the denser medium. Thus we obtain shaped radiation patterns in air which were only previously attainable inside the dielectric half-space. We then follow the early work of Collin on anisotropic artificial dielectrics which readily enables the implementation of practical anisotropic ENZs by simply stacking sub-wavelength periodic bi-layers of metal and dielectric at optical frequencies. We show that when such a realistic anisotropic ENZ has a low longitudinal permittivity, the desired shaped radiation patterns are achieved in air. In such cases the radiation is also much stronger in air than in the ENZ media, as air is the denser medium. Moreover, we investigate the subtle differences of the dipolar patterns when the anisotropic ENZ dispersion is either elliptic or hyperbolic.
Citation
Mohammad Memarian, and George Eleftheriades, "Dipole Radiation Near Anisotropic Low-Permittivity Media (Invited Paper)," Progress In Electromagnetics Research, Vol. 142, 437-462, 2013.
doi:10.2528/PIER13080802
References

1. Sommerfeld, A., "Uber die ausbreitung der wellen in der drahtlosen telegraphie," Annalen der Physik, Vol. 333, No. 4, 665-736, 1909.        Google Scholar

2. Norton, K., "The propagation of radio waves over the surface of the earth and in the upper atmosphere," Proceedings of the Institute of Radio Engineers, Vol. 24, No. 10, 1367-1387, 1936.        Google Scholar

3. Felsen, L., "Radiation from a uniaxially anisotropic plasma half space," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 4, 469-484, 1963.        Google Scholar

4. Kong, J., "Electromagnetic fields due to dipole antennas over stratified anisotropic media," Geophysics, Vol. 37, No. 6, 985-996, 1972.        Google Scholar

5. Lukosz, W. and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power," J. Opt. Soc. Am., Vol. 67, No. 12, 1607-1615, 1977.        Google Scholar

6. Lukosz, W. and R. E. Kunz, "Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles," J. Opt. Soc. Am., Vol. 67, No. 12, 1615-1619, 1977.        Google Scholar

7. Lukosz, W., "Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation," J. Opt. Soc. Am., Vol. 69, No. 11, 1495-1503, 1979.        Google Scholar

8. King, R. and G. Smith, Antennas in Matter: Fundamentals, Theory and Applications, MIT Press, Cambridge, MA, 1981.

9. Brewitt-Taylor, C., D. Gunton, and H. Rees, "Planar antennas on a dielectric surface," Electronics Letters, Vol. 17, No. 20, 729-731, 1981.        Google Scholar

10. Rahmat-Samii, Y., R. Mittra, and P. Parhami, "Evaluation of sommerfeld integrals for lossy half-space problems," Electromagnetics, Vol. 1, No. 1, 1-28, 1981.        Google Scholar

11. Engheta, N., C. H. Papas, and C. Elachi, "Radiation patterns of interfacial dipole antennas," Radio Science, Vol. 17, No. 6, 1557-1566, 1982.        Google Scholar

12. Rutledge, D. and M. Muha, "Imaging antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 4, 535-540, 1982.        Google Scholar

13. Smith, G., "Directive properties of antennas for transmission into a material half-space," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 232-246, 1984.        Google Scholar

14. Engheta, N., C. Papas, and C. Elachi, "Interface extinction and subsurface peaking of the radiation pattern of a line source," Applied Physics B, Vol. 26, No. 4, 231-238, 1981.        Google Scholar

15. Valle, S., L. Zanzi, M. Sgheiz, G. Lenzi, and J. Friborg, "Ground penetrating radar antennas: Theoretical and experimental directivity functions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 4, 749-759, 2001.        Google Scholar

16. Radzevicius, S. J., C.-C. Chen, L. Peters, Jr., and J. J. Daniels, "Nearfield dipole radiation dynamics through FDTD modeling," Journal of Applied Geophysics, Vol. 52, No. 23, 75-91, 2003.        Google Scholar

17. Sarabandi, K., M. D. Casciato, and I.-S. Koh, "Efficient calculation of the fields of a dipole radiating above an impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1222-1235, 2002.        Google Scholar

18. Xu, X.-B. and Y. Huang, "An efficient analysis of vertical dipole antennas above a lossy half-space," Progress In Electromagnetics Research, Vol. 74, 353-377, 2007.        Google Scholar

19. Firouzeh, Z. H., G. A. Vandenbosch, R. Moini, S. H. H. Sadeghi, and R. Faraji-Dana, "Efficient evaluation of Green's functions for lossy half-space problems," Progress In Electromagnetics Research, Vol. 109, 139-157, 2010.        Google Scholar

20. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010.        Google Scholar

21. Luan, L., P. R. Sievert, and J. B. Ketterson, "Near-field and farfield electric dipole radiation in the vicinity of a planar dielectric half space," New Journal of Physics, Vol. 8, No. 11, 264, 2006.        Google Scholar

22. Felsen, L., "Lateral waves on an anisotropic plasma interface," IRE Transactions on Antennas and Propagation, Vol. 10, No. 3, 347-349, 1962.        Google Scholar

23. Shavit, R. and E. Rosen, "Lateral wave contribution to the radiation from a dielectric half medium," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 7, 751-755, 1995.        Google Scholar

24. Rafi, G. Z., R. Moini-Mazandaran, and R. Faraji-Dana, "A new time domain approach for analysis of vertical magnetic dipole radiation in front of lossy half-space," Progress In Electromagnetics Research, Vol. 29, 57-68, 2000.        Google Scholar

25. Tsalamengas, J. and N. Uzunoglu, "Radiation from a dipole near a general anisotropic layer," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 1, 9-16, 1990.        Google Scholar

26. Saarinen, J. J. and J. E. Sipe, "A Green function approach to surface optics in anisotropic media," Journal of Modern Optics, Vol. 55, No. 1, 13-32, 2008.        Google Scholar

27. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007.        Google Scholar

28. Memarian, M. and G. V. Eleftheriades, "Radiation of dipoles at the interface of low permittivity media," Proc. IEEE International Symp. on Antennas and Propagation, 2013.

29. Collin, R. E., "A simple artificial anisotropic dielectric medium," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 206-209, 1958.        Google Scholar

30. Collin, R. E., Field Theory of Guided Waves, IEEE Press Series on Electromagnetic Wave Theory, Wiley, 1990.

31. Enoch, S., G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.        Google Scholar

32. Salandrino, A. and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B, Vol. 74, 075103, 2006.        Google Scholar

33. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, No. 18, 8247-8256, 2006.        Google Scholar

34. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, No. 5819, 1686, 2007.        Google Scholar

35. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Phys. Rev. B, Vol. 79, 245127, 2009.        Google Scholar

36. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, No. 6130, 286-287, 2013.        Google Scholar

37. Elser, J., V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Applied Physics Letters, Vol. 90, No. 19, 191109, 2007.        Google Scholar

38. Orlov, A. A., P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, "Engineered optical nonlocality in nanostructured metamaterials," Phys. Rev. B, Vol. 84, 045424, 2011.        Google Scholar

39. Chebykin, A. V., A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, "Nonlocal effective medium model for multilayered metal-dielectric metamaterials," Phys. Rev. B, Vol. 84, 115438, 2011.        Google Scholar

40. Chebykin, A. V., A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, "Nonlocal effective parameters of multilayered metaldielectric metamaterials," Phys. Rev. B, Vol. 86, 115420, 2012.        Google Scholar

41. Naik, G. V., J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, "Demonstration of Al : ZnO as a plasmonic component for near-infrared metamaterials," Proceedings of the National Academy of Sciences, Vol. 109, No. 23, 8834-8838, 2012.

42. Chern, R.-L., "Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials," Opt. Express, Vol. 21, No. 14, 16514-16527, 2013.        Google Scholar

43. Alù, A. and N. Engheta, "Extremely anisotropic boundary conditions and their optical applications," Radio Science, Vol. 46, No. 5, 1-8, 2011.        Google Scholar