Search Results(13687)

2013-09-05
PIER
Vol. 142, 309-320
Novel Design of a Compact Triple-Band Bandpass Filter Using Short Stub-Loaded SIRs and Embedded SIRs Structure
Kai-Da Xu , Yong-Hong Zhang , Daotong Li , Yong Fan , Joshua Le-Wei Li , William Joines and Qing Huo Liu
A novel compact planar triple-band bandpass filter using two sets of short stub-loaded stepped impedance resonators (SSLSIRs) and a pair of embedded stepped impedance resonators (ESIRs) has been proposed. The SSLSIRs can adjust the bandwidths of the corresponding passbands over a wide range, and the ESIRs employing non 0° -feed coupled structure with mixed electric and magnetic coupling can obtain an extra transmission zero. The embedded resonators structure can further miniaturize the dimensions of the whole triple-band filter. The operating frequencies of the SSLSIRs and ESIRs are designed for the applications of the WLAN (2.45/5.2 GHz) and WiMAX (3.5 GHz) systems, respectively. The simulated and measured results are both presented and show good agreement.
2013-09-05
PIER
Vol. 142, 291-308
Horn-Based Circular Polarized Antenna Array with a Compact Feeding for Ka-Band Monopulse Antenna
Yongli Ren , Jian Wang , Da-Cheng Hu and Ning Zhang
A pyramidal horn monopulse array is proposed for working at Ka-band with circular polarization (CP) characteristic. The array is composed of 28 elements with a 28-way waveguide power divider network. The element has a pyramidal horn with a rectangular waveguide, which is placed downside the horn. And a 45° inclined slot cut in the wide wall of the rectangular waveguide. The inclined slot can convert the excitation into two orthogonal modes (TE10 and TE01) with equal amplitude, and 90° out of phase is produced due to different propagation constants of the two modes in the pyramidal horn. Therefore, the antenna can achieve CP by using a compact structure without polarizer. This paper also provides procedure of the compact power divider network for synthesizing monopulse pattern. This monopulse array has excellent performance: The simulated and measured reflection coefficients of the sum port and the difference port of the array are below -15 dB, the side lobe level of array less than -27 dB, and axial ratio <3 dB in the mainlobe beamwidth. The simulated and measured results are in good agreement.
2013-09-05
PIER
Vol. 142, 275-289
A Novel Double-Winding Permanent Magnet Flux Modulated Machine for Stand-Alone Wind Power Generation
Linni Jian , Jianing Liang , Yujun Shi and Guo Xu
This paper proposes a novel double-winding flux modulated permanent magnet machine (FMPM) for stand-alone wind power generation. Based on the flux-modulating effect, a concentrated winding set and a distributed winding set can be artfully equipped on one stator component. This makes the proposed machine possessing much simpler structure than traditional double-winding double-stator PM machines. Comparative study shows that the proposed FMPM can offer higher torque capability and stronger flux adjustability than the existing single-winding FMPMs.
2013-09-04
PIER C
Vol. 43, 135-149
A Compact Omnidirectional Dual-Polarized Antenna for 2.4-GHz WLAN Applications with Highly Isolated Orthogonal Slots
Ying Liu , Jinyang Xue , Yu Cao and Shu-Xi Gong
An omnidirectional dual-polarized slot antenna with high port isolation for 2.4-GHz wireless local area network (WLAN) applications is proposed in this paper. The omnidirectional radiation patterns of the vertical polarization (VP) and horizontal polarization (HP) are achieved by individually cutting two orthogonal slots onto the metal walls of a cuboid antenna. The overall volume of the compact antenna is only 60 × 10 × 10 mm3 (0.488λ0 × 0.081λ0 × 0.081λ0 ). A prototype of the designed antenna is manufactured and tested. Both simulated and measured results show that the -10 dB impedance bandwidths of dual polarizations cover the desired band of 2.4-2.484 GHz and the port isolation, in the operating frequency, is less than -35 dB. Stable measured gains are greater than 2.75 and 1.35 dBi for the VP and HP, respectively.
2013-09-04
PIER Letters
Vol. 42, 141-154
Calculation of the Currents Generated in Dental Tissues by the Application of an External Electric Field
Leonardo Sandrolini
The application of an external electric field has been shown to enhance the impregnation of resin monomers used in restorative dentistry. Further to experimental investigations that have related the migration of monomers to their electrical properties, additional insight into the conduction mechanism within the tooth can be gained by numerical modelling of the current conduction through the tooth. This paper presents the development of a three-dimensional realistic voxel model of a human tooth from a data set of digital images and the computation of the currents in the dental tissues by means of a low-frequency numerical code (scalar potential finite difference). Results for the electric potential and current density magnitude in various cross sections of the tooth model are presented for an applied 10 V dc voltage between the electrodes.
2013-09-04
PIER Letters
Vol. 42, 129-139
Compact Wideband Rectangular Dielectric Resonator Antenna with Parasitic Elements and Air Gaps
Mohammad Ranjbar Nikkhah , Jalil Rashed-Mohassel and Ahmed A. Kishk
A simple compact wideband aperture coupled rectangular dielectric resonator antenna (RDRA) loaded with similar parasitic dielectric elements separated by low dielectric spacers as air gap layers is designed. The bandwidths of the proposed RDRAs are significantly enhanced as compared with the bandwidth of the driven DRA without an air gap. The measurement results are verified experimentally for a one parasitic element case. A bandwidth of 18% and 27% with VSWR better than 2 is achieved for double and triple gaps, respectively. It is interesting to point out that radiation patterns are stable in the entire operation band.
2013-09-04
PIER Letters
Vol. 42, 119-127
A Circularly Polarized Compact Antenna for UHF Band RFID Reader
Yan Li , Jun Ou Yang and Peng Yang
This paper presents a circularly polarized compact antenna based on the concept of Yagi-Uda antenna. By properly arranging three ring resonators operating at the fundamental mode, a compact Yagi-Uda like antenna is proposed to form directional pattern. This proposed antenna has comparable size with the ring resonator of quarter-wavelength, while the performances are comparable with the conventional microstrip antenna of half-wavelength. To validate the proposed design methodology, an antenna working at UHF radio-frequency identification (RFID) band is benchmarked. Both simulated and measured results are shown for comparison.
2013-09-04
PIER
Vol. 142, 261-273
A 23-GHz Bandwidth Automatic Gain Control Amplifier with Wide Dynamic Range for High Speed Communication
Bo Zhang , Yong-Zhong Xiong , Lei Wang , Sanming Hu and Joshua Le-Wei Li
In this paper, a wide bandwidth and wide dynamic range AGC amplifier is presented. A push-pull variable gain amplifier (VGA) structure is proposed for wide dynamic rang. Moreover the bandwidth enhancement technique is used in the post amplifier design to ensure the wide bandwidth and gain of whole circuit. The experimental results demonstrate that the proposed AGC amplifier that is fabricated in 0.13 μm SiGe BiCMOS process, achieves a 23-GHz bandwidth and 36-dB dynamic rang among the recently published AGC amplifiers, whereas the power and area consumption are 57.6 mW and 1.9 mm2, respectively.
2013-09-03
PIER B
Vol. 54, 185-201
A Modified Model of Squirrel Cage Induction Machine Under General Rotor Misalignment Fault
Hamidreza Akbari
A great deal of researches have so far been conducted on the analysis of eccentricity in induction machines. However, they mostly consider radial non-uniformity and neglect nonuniformity in the axial direction, but in practice, the axial non-uniformity due to rotor misalignment faults is quite common. This paper presents a modified model of a three-phase squirrel cage induction machine under different rotor misalignment conditions. For this purpose, general expressions for air gap and mean radius of induction machine, considering axial non-uniformity, have been developed. The proposed model is able to calculate the time varying inductances versus rotor angle for three-phase squirrel cage induction machines under general rotor misalignment, including static, dynamic and mixed rotor misalignment in the frame of a single program. Simulation results were verified by the experimental ones.
2013-09-03
PIER Letters
Vol. 42, 109-118
A Novel Decoupling Network Using Parallel Coupled Lines for Increasing the Port Isolation of Two Coupled Antennas
Hui Wang , Bin-Kai Ou , Kam-Weng Tam and Wen Wu
A compact decoupling network for enhancing the ports isolation of two coupled antennas is proposed in this letter. Parallel coupled lines (PCLs) and transmission lines (TLs) with different electrical lengths are considered to control the magnitude and phase of this decoupling network, respectively. The coupling coefficient of the PCLs is adjusted with various line widths and coupled gaps so that the magnitude of this network will be equal to that of the coupled antennas. And the electrical length of the series TLs can be controlled to make the signals of coupled antennas and decoupling network out of phase. Thus, the mutual coupling between the coupled antennas can be canceled. A prototype is fabricated on a RO4003 print circuit board (PCB) for demonstration. The measured results agree quiet well with the simulation ones. High antenna isolation and good matching are simultaneously achieved at the center frequency, i.e., 925 MHz for global system mobile communications (GSM) which shows the compact decoupling network is suitable for reducing the isolation of size limited multi-antenna systems.
2013-09-02
PIER B
Vol. 54, 167-184
Perspectives of HF Half Loop Antennas for Stealth Combat Ships
Majed Koubeissi , Bruno Pomie and Erwan Rochefort
Based on technical analysis and budget link experimentation, the main purpose here is to show improvement of HF half loop antennas in terms of signal-to-noise ratio (SNR) and stealthy for a combat ship. A special designed HF antenna brings a high quality communication over 1000 NM. A suitable integration of a HF half loop antenna at ship corners contributes to the ship stealthy. This paper shows the antenna performance and the benefit of the completely body integrated HF half loop antenna regarding whip antennas. The corresponding SNR is 15 to 20 dB better than for a conventional antenna.
2013-09-02
PIER B
Vol. 54, 149-166
Polyvinyl-Alcohol (Pva)-Based RF Humidity Sensor in Microwave Frequency
Emran Md Amin , Nemai C. Karmakar and Bjorn Winther-Jensen
A highly sensitive, passive relative humidity (RH) sensor using polyvinyl-alcohol (PVA) dielectric film is presented. For the first time, PVA is investigated in microwave RF sensing devices for low cost, high resolution and accurate chipless RH sensor realization. Comparative study with traditional humidity sensing Kapton polymer is presented to validate superior performance of PVA film. Results are presented for two different passive high Q resonators to validate sensing performance in wide applications. Moreover, a new sensing parameter is described to investigate sensitivity measurement through resonance frequency and Q factor variation. The RH sensor has the potential to be integrated with mm and μm-wave high frequency passive RFID for ubiquitous sensing.
2013-09-02
PIER C
Vol. 43, 121-133
Modified Bayesian Beamformer for Binning Error Elimination
Said El-Khamy , Mohammed Rizk and Roshdy K. Korayem
Constrained Least Mean Square (CLMS) algorithm is used to adapt the antenna array weights. CLMS in its simple form fails to capture the Signal of Interest (SOI) if there is an error in the Direction of Arrival (DOA) estimation. Moreover, it will consider the SOI as an interferer and create null in the desired DOA. The large gain will be towards the detected wrong direction. Derivative constraints and Bayesian beamformer are two techniques used to overcome such a problem. Derivative constraints destroy a lot of Degrees of Freedom (DOF). Bayesian beamformer destroys only one DOF but vulnerable to binning error. The proposed algorithm overcomes the problem of binning error in the Bayesian beamformer with only one extra DOF.
2013-09-02
PIER
Vol. 142, 243-260
Electromagnetic Isolation of a Microstrip by Embedding in a Spatially Variant Anisotropic Metamaterial
Raymond C. Rumpf , Cesar R. Garcia , Harvey H. Tsang , Julio E. Padilla and Michael D. Irwin
The near-field surrounding devices can be arbitrarily sculpted if they are placed inside a spatially variant anisotropic metamaterial (SVAM). Our SVAMs are low loss because they do not contain metals and are extraordinarily broadband, working from DC up to a cutoff. In the present work, a microstrip transmission line was isolated from a metal object placed in close proximity by embedding it in an SVAM so that the field avoided the object. Our paper begins by outlining a simple finite-difference modeling approach for studying transmission lines embedded in SVAMs. We then present our design and experimental results to confirm the concept.
2013-09-01
PIER B
Vol. 54, 129-148
Power Angle Spectrum of Satellite Communication Downlink in Rain Environment at Millimeter-Wave Bands
Shu-Hong Gong , Wei Meng and Jing Yang
The study of this paper focuses on the power angle spectrum (PAS) of the satellite communication downlink in rain environment at millimeter-wave bands. The two-dimension angle distribution expression of the incoherent intensity of the ground receiving antenna in rain is deduced in detail. The coherent intensity is discussed according to the first-order multiple scattering approximation theory. The calculation model of PAS is given based on the coherent intensity and the incoherent intensity angle distribution. Based on the Marshall-Palmer raindrop size distribution, the rain-induced attenuation coefficient γ = ρt>, as well as the average scattering amplitude function of rain area, is calculated and discussed by Mie method; the two-dimension and the one-dimension PASs are simulated and analyzed at different incident angles for different rain rates, frequencies and polarizations. The PAS model and the simulation results given in this paper are important for the quantitative evaluation of the impacts of rain environment on MMW MIMO channel characteristics.
2013-09-01
PIER C
Vol. 43, 109-120
Ultra-Wideband Planar Inverted-F Antenna (PIFA) for Mobile Phone Frequencies and Ultra-Wideband Applications
Ricardo Gomez-Villanueva , Roberto Linares-y-Miranda , José Alfredo Tirado-Méndez and Hildeberto Jardon-Aguilar
A new planar inverted-F antenna with a very large bandwidth starting from 817 MHz to 11.5 GHz (VSWR < 3) is proposed as an alternative for high performance mobile phones intended to cover the major part of the mobile phone frequencies worldwide as well as the ultra-wideband (UWB) frequency range. A prototype of the antenna was constructed and the reflection coefficient and radiation patterns were measured to demonstrate an adequate radiation performance. The antenna dimensions of 4 x 2.5 x 0.5 cm3 are compatible with the requirements imposed by the most recent commercially available smartphones. Besides, the easy construction without a matching network or a complicated geometry is an additional feature that can be reflected in low fabrication cost.
2013-09-01
PIER Letters
Vol. 42, 97-107
A Closed Algebra of Clebsch Forms Derived from Whittaker Super-Potentials and Applications in Electromagnetic Research.
Theophanes E. Raptis
A type of closed exterior algebra in R3 under the cross product is revealed to hold between differential forms from the three Whittaker scalar potentials, associated with the fields of a moving electron. A special algebraic structure is revealed in the context of Clebsch reparametrization of these scalars, and a special prescription for the construction of permutation invariant electromagnetic fields is given as well as a superposition with parallel electric and magnetic components.
2013-09-01
PIER Letters
Vol. 42, 89-96
Broadband Multipath-Rejection Shorted Annular Patch Antenna for GPS Applications
Luyang Ji , Guang Fu , Zhi-Ya Zhang and Shu-Xi Gong
A compact shorted annular patch antenna for global positioning system is presented in this paper. Multipath-rejection capability is realized with two stacked shorted annular patches (SAP). The broadband characteristic of the (-10 dB return loss) input impedance bandwidth and the 3 dB bandwidth of axial ratio is achieved by employing capacitively coupled feed structure while the shorted pins located between the upper and the lower patches will realize the impendence matching of the high frequency, which can cover L5/L2/L1 bands for GPS and the relative input impedance bandwidth can achieve 50.6%. The size is 0.3λ×0.3λ for 1.1 GHz.
2013-09-01
PIER M
Vol. 32, 271-283
Radiation from Axial Slot on an Infinitely Long Conducting Circular Cylinder Eccentrically Coated with Dielectric and Partly Embedded in a Ground Plane
Hassan Ragheb and Essam Hassan
An analytical formulation is developed for an axial slot on an infinitely long conducting circular cylinder eccentrically coated with dielectric and partially embedded in a ground plane. A computer program has been developed based on the resulting formulation. The problem is highly significant since the ground plane could be the body of an aircraft, a ship, or any other mobile system. The effect of the ground plane can be used to enhance the radiation characteristics in some cases. It is also a support for the antenna instead of using other mechanical mounting supporting system. Numerical results for different antenna configurations are illustrated. The results show that how one may shape the pattern by offsetting the slotted cylinder from the center of the dielectric coating.
2013-09-01
PIER M
Vol. 32, 257-270
Extension of the Transmission Line Theory Application with Modified Enhanced Per-Unit-Length Parameters
Sofiane Chabane , Philippe Besnier and Marco Klingler
This paper introduces a modified enhanced transmission-line theory to account for higher-order modes while using a standard transmission line equation solver or equivalently a Baum, Liu and Tesche (BLT) equation solver. The complex per-unit-length parameters as defined by Nitsch et al. are first cast into an appropriate per-unit-length resistance, inductance, capacitance and conductance (RLCG) form. Besides, these per-unit-length parameters are modified to account for radiation losses with reasonable approximations. This modification is introduced by an additional per-unit-length resistance. The reason and explanations for this parameter are provided. Results obtained with this new formalism are comparable to those obtained using an electromagnetic full-wave solver, thus extending the capability of conventional transmission line solvers.