Vol. 54
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-09-01
Power Angle Spectrum of Satellite Communication Downlink in Rain Environment at Millimeter-Wave Bands
By
Progress In Electromagnetics Research B, Vol. 54, 129-148, 2013
Abstract
The study of this paper focuses on the power angle spectrum (PAS) of the satellite communication downlink in rain environment at millimeter-wave bands. The two-dimension angle distribution expression of the incoherent intensity of the ground receiving antenna in rain is deduced in detail. The coherent intensity is discussed according to the first-order multiple scattering approximation theory. The calculation model of PAS is given based on the coherent intensity and the incoherent intensity angle distribution. Based on the Marshall-Palmer raindrop size distribution, the rain-induced attenuation coefficient γ = ρt>, as well as the average scattering amplitude function of rain area, is calculated and discussed by Mie method; the two-dimension and the one-dimension PASs are simulated and analyzed at different incident angles for different rain rates, frequencies and polarizations. The PAS model and the simulation results given in this paper are important for the quantitative evaluation of the impacts of rain environment on MMW MIMO channel characteristics.
Citation
Shu-Hong Gong, Wei Meng, and Jing Yang, "Power Angle Spectrum of Satellite Communication Downlink in Rain Environment at Millimeter-Wave Bands," Progress In Electromagnetics Research B, Vol. 54, 129-148, 2013.
doi:10.2528/PIERB13072704
References

1. Gong, S. H., Study on some problems for radio wave propagating and scattering through troposphere, Ph.D. Dissertation, Department of Science, Xidian University, Xi'an, China, 2008.

2. Arapoglou, P. D., K. Liolis, M. Bertinelli, et al. "MIMO over satellite, a review," IEEE Communications Surveys & Tutorials First Quarter, Vol. 13, No. 1, 27-51, 2011.
doi:10.1109/SURV.2011.033110.00072

3. Paulraj, A. J., D. A. Gore, R. U. Nabar, et al. "An overview of MIMO communications --- A key to gigabit wireless," Proceedings of the IEEE, Vol. 92, No. 2, 198-218, 2004.
doi:10.1109/JPROC.2003.821915

4. Huang, K. C. and Z. C. Wang, Millimeter Wave Communication Systems, 133-162, John Wiley & Sons, 2011.

5. Pi, Z. Y. and F. Khan, "A millimeter-wave massive MIMO system for next generation mobile broadband," Signals, Systems and Computers (ASILOMAR), 693-698, 2012.

6. Suzuki, S., T. Nakagawa, H. Furuta, et al. "Evaluation of millimeter-wave MIMO-OFDM transmission performance in a TV studio," IEEE Asia-Pacific Microwave Conference, APMC, 843-846, 2006.

7. Madhow, U., "MultiGigabit millimeter wave communication: System concepts and challenges," IEEE Information Theory and Applications Workshop, 193-196, 2008.

8. Moraitis, N. and P. Constantinou, "Indoor channel capacity evaluation utilizing ULA and URA antennas in the millimeter wave band," IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 1-5, 2007.

9. Torkildson, E., C. Sheldon, U. Madhow, et al. "Millimeter-wave spatial multiplexing in an indoor environment," IEEE Globecom Workshops, 1-6, 2009.
doi:10.1109/GLOCOMW.2009.5360686

10. Ranvier, S., C. Icheln, and P. Vainikainen, "Measurement-based mutual information analysis of MIMO antenna selection in the 60-GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 686-689, 2009.
doi:10.1109/LAWP.2009.2025398

11. Sheldon, C., E. Torkildson, M. Seo, et al. "A 60 GHz line-of-sight 2 × 2 MIMO link operating at 1.2 Gbps," IEEE Antennas and Propagation Society International Symposium, AP-S, 1-4, 2008.

12. Sheldon, C., M. Seo, E. Torkildson, et al. "Four-channel spatial multiplexing over a millimeter-wave line-of-sight link," IEEE MTT-S International Microwave Symposium Digest, MTT'09, 389-392, 2009.

13. Manojna, D. S., S. Kirthiga, and M. Jayakumar, "Study of 2 × 2 spatial multiplexed system in 60 GHz indoor environment," International Conference on Process Automation, Control and Computing, 1-5, 2011.

14. Torkildson, E., U. Madhow, and M. Rodwell, "Indoor millimeter wave MIMO: Feasibility and performance," IEEE Trans. on Wireless Communications, Vol. 10, 4150-4160, 2011.
doi:10.1109/TWC.2011.092911.101843

15. Sheldon, C., E. Torkildson, M. Seo, et al. "Spatial multiplexing over a line-of-sight millimeter-wave MIMO link: A two-channel hardware demonstration at 1.2 Gbps over 41m range," European Wireless Technology Conference, 198-201, 2008.

16. Moraitis, N., D. Vouyioukas, V. Milas, et al. "Outdoor capacity study utilizing multiple element antennas at the millimeter wave band," IEEE International Conference on Wireless and Mobile Computing, Networking And Communications --- WiMob, 2-7, 2007.

17. Ranvier, S., S. Geng, and P. Vainikainen, "Mm-wave MIMO systems for high data-rate mobile communications," 1st International Conference on Wireless Communication, Vehicular Technology, Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology | Wireless VITAE, 142-146, 2009.

18. Xia, P. F., H. N. Niu, J. Oh, et al. "Practical antenna training for millimeter wave MIMO communication," IEEE Vehicular Technology Conference, (VTC Spring), 1-5, 2008.

19. Toda, A. P., F. de Flaviis, and J. Castaneda, "60 GHz waveguide array design for MIMO channel characterization," IEEE International Conference on Ultra-wideband ICUWB, 12-16, 2009.

20. Ranvier, S., J. Kivinen, and P. Vainikainen, "Millimeter-wave MIMO radio channel sounder," IEEE Trans. on Instrumentation and Measurement, Vol. 56, 1018-1024, 2007.
doi:10.1109/TIM.2007.894197

21. Palaskas, Y., A. Ravi, and S. Pellerano, "MIMO techniques for high data rate radio communications," IEEE Custom Intergrated Circuits Conference (CICC), 141-148, 2008.

22. Kivinen, J., "60-GHz wideband radio channel sounder," IEEE Trans. on Instrumentation and Measurement, Vol. 56, 1831-1838, 2007.
doi:10.1109/TIM.2007.895616

23. Pollok, A., W. G. Cowley, and I. D. Holland, "Multiple-input multiple-output options for 60 GHz line-of-sight channels," Communications Theory Workshop (ASCTW), 101-106, 2008.

24. Peter, M., W. Keusgen, and J. Luo, "A survey on 60 GHz broadband communication: Capability, applications and system design," Microwave Integrated Circuit Conference European, 1-4, 2008.

25. Nsenga, J., W. Van Thillo, F. Horlin, et al. "Joint transmit and receive analog beamforming in 60 GHz MIMO multipath channels," IEEE International Conference on Communications, 1-5, 2009.

26. Torkildson, E., H. Zhang, and U. Madhow, "Channel modeling for millimeter wave MIMO," Information Theory and Applications Workshop (ITA), 1-8, 2010.
doi:10.1109/ITA.2010.5454109

27. Zhang, H., S. Venkateswaran, and U. Madhow, "Channel modeling and MIMO capacity for outdoor millimeter wave links," IEEE Wireless Communications and Networking Conference (WCNC), 1-6, 2010.

28. Lee, S. J., M. G. Kyeong, and W. Y. Lee, "Capacity analysis of MIMO channel with line-of-sight and reflected paths for millimeter-wave communication," International Conference on Signal Processing and Communication Systems (ICSPCS), 1-5, 2010.

29. Ahmadi-Shokouh, J., R. Rafi, A. Taeb, et al. "Real-time Millimeter-Wave MIMO channel measurements," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.

30. Ayach, R. W. H., J. S. Abu-Surra, et al. "The capacity optimality of beam steering in large millimeter wave MIMO systems," The 13th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 100-104, 2012.
doi:10.1109/SPAWC.2012.6292865

31. Kolani, I. and J. Zhang, "Millimeter wave for MIMO small antenna systems and for mobile handset," 2011 International Conference on Computer Science and Network Technology (ICCSNT), 150-153, 2011.

32. Ayach, O. E., R. W. Heath, J. S. Abu-Surra, et al. "Low complexity precoding for large millimeter wave MIMO systems," IEEE International Conference on Communications (ICC), 3724-3729, 2012.

33. Lee, S. J., W. Lee, S. E. Hong, et al. "Performance evaluation of beamformed spatial multiplexing transmission in millimeter-wave communication channels," IEEE 77th Vehicular Technology Conference (VTC Fall), 1-5, 2012.

34. Brady, J., N. Behdad, and A. M. Sayeed, "Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements," IEEE Trans. on Antennas and Propagation, Vol. 61, 3814-3827, 2013.
doi:10.1109/TAP.2013.2254442

35. Liolis, K. P. and A. D. Panagopoulos, "On the applicability of MIMO principle to 10-66 GHz BFWA networks: Capacity enhancement through spatial multiplexing and interference reduction through selection diversity," IEEE Trans. on Communications, Vol. 57, 530-541, 2009.
doi:10.1109/TCOMM.2009.02.060474

36. Ishimaru, A., J. Ritcey, S. Jaruwatanadilok, et al. "A MIMO propagation channel model in a random medium," Antennas and Propagation Society International Symposium, 1341-1344, 2007.

37. Liolis, K. P. and B. D. Rao, "Application of MIMO theory to the analysis of broadband fixed wireless access diversity systems above 10 GHz," Antennas and Propagation Society International Symposium, 145-148, 2006.

38. Ishimaru, A., S. Jaruwatanadilok, J. A. Ritcey, et al. "A MIMO propagation channel model in a random medium," IEEE Trans. on Antennas and Propagation, Vol. 58, 178-186, 2010.
doi:10.1109/TAP.2009.2036189

39. Frigyes, I. and P. Horvith, "Mitigation of rain-induced fading: Route diversity vs rout-time coding," IEE Twelfth International Conference on Antennas and Propagation (ICAP), 292-295, 2003.

40. Oh, C. I., S. H. Choit, D. I. Chang, et al. "Analysis of the rain fading channel and the system applying MIMO," International Symposium on Communications and Information Technologies (ISCIT), 507-510, 2006.

41. Schwarz, R. T., A. Knopp, and B. Lankl, "The channel capacity of MIMO satellite links in a fading environment: A probabilistic analysis," International Workshop on Satellite and Space Communications 2009, 78-82, 2009.
doi:10.1109/IWSSC.2009.5286414

42. Liolis, K. P., A. D. Panagopoulos, and P. G. Cottis, "Biterror outage over SIMO spatially correlated rain-fading channels," IEEE Antennas and Propagation Magazine, Vol. 53, 204-209, 2011.
doi:10.1109/MAP.2011.6028460

43. Liolis, K. P., A. D. Panagopoulos, and P. G. Cottis, "Multi-satellite MIMO communications at Ku-band and above: Investigations on spatial multiplexing for capacity improvement and selection diversity for interference mitigation," EURASIP Journal on Wireless Communications and Networking, Vol. 2007, 1-11, 2007.

44. Lee, W., "Effects on correlation between two mobile radio base-station antennas," IEEE Trans. on Communications, Vol. 21, No. 11, 1214-1224, 1973.
doi:10.1109/TCOM.1973.1091578

45. Salz, J. and J. H. Winters, "Effect of fading correlation on adaptive arrays in digital mobile radio," IEEE Trans. on Vehicular Technology, Vol. 43, No. 4, 1049-1057, 1994.
doi:10.1109/25.330168

46. Asztély, D., On antenna arrays in mobile communication systems: Fast fading and GSM base station receiver algorithms, Ph.D. Dissertation, Royal Institute of Technology, Stockholm, Sweden, IR-S3-SB-9611, 1996.

47. Pedersen, K. I., P. E. Mogensen, and B. H. Fleury, "Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance," IEEE 48th Vehicular Technology Conference, Vol. 2, 1998.

48. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vol. 2, Academic Press, New York, 1978.

49. Setijadi, E., A. Matsushima, N. Tanaka, and G. Hendrantoro, "Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model," Progress In Electromagnetics Research, Vol. 99, 339-354, 2009.
doi:10.2528/PIER09102609

50. Van de Hulst, H. C., Light Scattering: By Small Particles, Courier Dover Publications, 1957.

51. Ishimaru, A. and L. T. C. Rudolf, "Multiple scattering effects on wave propagation due to rain," Annales des Télécommunications, Vol. 35, No. 11-12, 373-379, Springer-Verlag, 1980.

52. Huang, J. Y., S. H. Gong, and F. Wang, "Optimal scattering polarization characteristic for cylinder target in rain at millimeter wave band," Progress In Electromagnetics Research, Vol. 55, 241-248, 2005.
doi:10.2528/PIER05041402

53. ITU-R Recommendation P.311-13, , Specific attenuation model for rain for use in prediction methods, International Telecommunication Union, Geneva, 2005.

54. Zhang, B. Q., S. H. Gong, W. Y. Wang, et al. "Study on the characteristics of rain-induced polarization mismatch factor at Ka bands," Hans Journal of Wireless Communications, Vol. 2, No. 1, 1-6, 2012.
doi:10.4236/hjwc.2012.21001

55. Battan, L. J., Radar Observation of the Atmosphere, 41, University of Chicago Press, Chicago, Illinois, 1973.