Vol. 42
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-09-03
A Novel Decoupling Network Using Parallel Coupled Lines for Increasing the Port Isolation of Two Coupled Antennas
By
Progress In Electromagnetics Research Letters, Vol. 42, 109-118, 2013
Abstract
A compact decoupling network for enhancing the ports isolation of two coupled antennas is proposed in this letter. Parallel coupled lines (PCLs) and transmission lines (TLs) with different electrical lengths are considered to control the magnitude and phase of this decoupling network, respectively. The coupling coefficient of the PCLs is adjusted with various line widths and coupled gaps so that the magnitude of this network will be equal to that of the coupled antennas. And the electrical length of the series TLs can be controlled to make the signals of coupled antennas and decoupling network out of phase. Thus, the mutual coupling between the coupled antennas can be canceled. A prototype is fabricated on a RO4003 print circuit board (PCB) for demonstration. The measured results agree quiet well with the simulation ones. High antenna isolation and good matching are simultaneously achieved at the center frequency, i.e., 925 MHz for global system mobile communications (GSM) which shows the compact decoupling network is suitable for reducing the isolation of size limited multi-antenna systems.
Citation
Hui Wang, Bin-Kai Ou, Kam-Weng Tam, and Wen Wu, "A Novel Decoupling Network Using Parallel Coupled Lines for Increasing the Port Isolation of Two Coupled Antennas," Progress In Electromagnetics Research Letters, Vol. 42, 109-118, 2013.
doi:10.2528/PIERL13071501
References

1. Hansen, R. C., Phase Array Antennas, 1st Ed., Ch. 9, Wiley, New York, 1998.

2. Fallahi, R. and M. Roshandel, "Effect of mutual coupling and configuration of concentric circular array antenna on the signal-to-interference performance in CDMA systems," Progress In Electromagnetics Research, Vol. 76, 427-447, 2007.
doi:10.2528/PIER07070104

3. Yousefzadeh, N., C. Ghobadi, and M. Kamyab, "Consideration of mutual coupling in a microstrip patch array using fractal elements," Progress In Electromagnetics Research, Vol. 66, 41-49, 2006.
doi:10.2528/PIER06081401

4. Krusevac, S., P. B. Rapajic, and R. Kennedy, "Mutual coupling effect on thermal noise in multi-element antenna systems," Progress In Electromagnetics Research, Vol. 59, 325-333, 2006.
doi:10.2528/PIER05091103

5. Wang, Q. and Q. Q. He, "An arbitrary conformal array pattern synthesis method that includes mutual coupling and platform effects," Progress In Electromagnetics Research, Vol. 110, 297-311, 2010.
doi:10.2528/PIER10092204

6. Li, Z. and Y. R. Samii, "Optimization of PIFA-IFA combination in handset antenna design," IEEE Trans. Antennas Propag., Vol. 53, No. 5, 1770-1778, May 2006.

7. Rahman, A. A. and J. T. Kian, "Microwave radiation safety assessment near cellular base stations," CCSP2005, 176-180, 2005.

8. Bin-Asrokin, A., A. Bin-Abas, R. Basri, and N. Bin-Jamlus, "Design of X-polarized GSM 900 base station antenna with field test measurement," ICCEA2010, Vol. 2, 94-98, Apr. 2010.

9. Islam, M. T. and M. Shahidul Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.

10. Kovacs, I. Z., P. C. F. Egger, and K. Olesen, "Characterization of cross polarization discrimination in forest environment," Vehicular Technology Conference, Vol. 2, 725-731, 2000.

11. Zulkifli, F. Y., E. T. Rahardjo, and D. Hartanto, "Mutual coupling reduction using dumbbell defected ground structure for multiband microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 13, 29-40, 2010.
doi:10.2528/PIERL09102902

12. Chen, S. C., Y. S. Wang, and S. J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3650-3658, Dec. 2008.
doi:10.1109/TAP.2008.2005469

13. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

14. Iluz, Z., R. Shavit, and R. Bauer, "Microstrip antenna phased array with electromagnetic bandgap substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1446-1453, Jun. 2004.
doi:10.1109/TAP.2004.830252

15. Yang, L., M. Fan, F. Chen, J. Z. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Micro. Theory Tech., Vol. 53, No. 1, 183-190, Jan. 2005.
doi:10.1109/TMTT.2004.839322

16. Zhao, L. Y., L. K. Yeung, and K. L. Wu, "A novel second-order decoupling network for two-element compact antenna arrays," APMC2012, 1172-1174, 2012.

17. Hannan, P. W., D. Lerner, and G. Knittel, "Impedance matching a phased-array antenna over wide scan angles by connecting circuits," IEEE Trans. Antennas Propag., Vol. 13, No. 1, 28-34, Jan. 1965.
doi:10.1109/TAP.1965.1138365

18. Zuo, S. L., Y. Z. Yin, W. J. Wu, Z. Y. Zhang, and J. Ma, "Investigation of reduction of mutual coupling between two planar monopoles using two λ/4 slots," Progress In Electromagnetics Research Letters, Vol. 19, 9-18, 2010.

19. Yu, Y. T., Y. Jiang, W. J. Feng, S. Mbayo, and S. Y. Chen, "Compact multiport array with reduced mutual coupling," Progress In Electromagnetics Research Letters, Vol. 39, 161-168, 2013.

20. Pozer, D. M., Microwave Engineering, 3rd Ed., Wiley, New York, 2005.

21. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna element," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, Jun. 2007.
doi:10.1109/TAP.2007.898618