Search Results(13687)

2013-08-23
PIER C
Vol. 43, 15-28
Simulation and Analysis of 60ghz Millimeter-Wave Indoor Propagation Characteristics Base on the Method of Sbr/Image
Yuan-Jian Liu , Qin-Jian Shi and Ye-Rong Zhang
In this paper, 60 GHz millimeter-wave indoor propagation characteristics are simulated and analyzed using the method of SBR/IM (shooting and bounding ray tracing/ image). And the simulated and measured results agree well, so the correctness of the method has been validated. Some propagation parameters are obtained in the simulation, such as the indoor reception power distribution, distribution of phase angle of received power, root mean square (RMS) delay spread, direction of arrival, RMS angular spread, Doppler shift, etc. The analysis of the above results provides the foundation for the indoor coverage of millimeter-wave communication system.
2013-08-23
PIER M
Vol. 32, 215-228
Study of Ionospheric Effects on Azimuth Imaging for Medium-Earth-Orbit SAR
Liang Li and Jun Hong
The Medium-Earth-Orbit SAR(MEOSAR)is one of the potential next-generation spacebarne SAR for its excellent performance, however, due to ionospheric effects, a MEOSAR may not be able to produce data useful for science applications. So study of ionospheric effects is one of the critical techniques for the development of MEOSAR. In this paper, we present ionospheric effects on azimuth imaging for MEOSAR. First, we establish an analysis model for ionospheric effects on azimuth imaging of MEOSAR based on the system characteristics of MEOSAR and the temporal-variability of ionosphere. Then, based on the analysis model, we analyze the effects caused by the quadratic and cubic phase errors induced by temporal-variability of ionosphere on azimuth imaging. According to the results of our analysis, we conclude that both the quadratic phase error and the cubic phase error neglected for Low-Earth-Orbit SAR(LEOSAR) will deteriorate the azimuth imaging for MEOSAR and ionospheric effects become more and more serious with the increase of SAR altitude and the improvement of azimuth resolution designed.
2013-08-23
PIER M
Vol. 32, 201-213
Interference Interaction of Counter-Propagating Pulses on a Magneto-Dielectric Slab
Bogdan A. Kochetov
Dynamics of interference interaction of counter-propagating electromagnetic pulses on a magneto-dielectric slab is studied in time domain. Energy redistribution in the counter-propagating pulses with arbitrary waveforms is considered. The maximal energy redistribution in the diffracted field takes place under certain conditions. The conditions are found and their physical explanation is supplied. The problem of transient electromagnetic wave diffraction on homogeneous magneto-dielectric slab is solved analytically by means of Laplace transform. The analytical solution is in agreement with numerical simulation based on finite difference time domain approach.
2013-08-23
PIER
Vol. 142, 141-157
Complete Complementary Sequence Coding Waveform Based Azimuth Multi-Channel Space-Borne SAR with Ultra-Low Range Sidelobe Ratio Performance
Jie Chen , Yanqing Zhu , Pengbo Wang and Wei Yang
Sidelobes of strong targets substantially impact image quality of synthetic aperture radar (SAR) using linear frequency modulation (LFM) waveform, especially in urban areas. A novel space-borne azimuth multi-channel SAR scheme with ultra-low range sidelobe-ratio (RSLR) performance was proposed, employing complete complementary sequence (CC-S) coding waveform. The CC-S waveform was utilized to acquire ultra-low RSLR performance in range direction. Azimuth multi-channel scheme was introduced, to compensate reduction of effective PRF due to employing CC-S, and to mitigate azimuth resolution lost resulted from strong azimuth weighting, in order to implement low side-lobe performance in both range and azimuth direction. The method for pre-processing the CC-S based multi-channel SAR data was proposed, which would both compensate receiving time difference of sub-sequences and reconstruct azimuth spectrum of multi-channel SAR data. Furthermore, the corresponding image formation algorithm for accurately focusing raw data of the SAR system was also proposed. Computer simulation results were presented, which demonstrated the validity of the proposed SAR scheme and image formation algorithm.
2013-08-23
PIER
Vol. 142, 123-140
A Novel SAR Target Detection Algorithm Based on Contextual Knowledge
Fei Gao , Achang Ru , Jinping Sun and Amir Hussain
This paper proposes a Synthetic Aperture Radar (SAR) vehicle target detection algorithm based on contextual knowledge. The proposed algorithm firstly obtains the general classification of SAR image with a Markov Random Field (MRF)-based segmentation algorithm; then modifies the prior target presence probability utilizing terrain types, distances to boundary and target aggregation degree; finally gains the detection results using improved Cell Averaging-Constant False Alarm Rate (CA-CFAR). Detections with real SAR image data show that this algorithm can effectively improve target detection rate and reduce false alarms compared with conventional CA-CFAR.
2013-08-22
PIER B
Vol. 54, 1-26
A Multi Facets Composite Panel Reflectarray Antenna for a Space Contoured Beam Antenna in Ku Band
Hervé Legay , Daniele Bresciani , Eric Labiole , Renaud Chiniard and Raphael Gillard
A 1.3 m piecewise reflectarray demonstrator has been designed, manufactured and tested, that radiates a contoured beam coverage over North America. A very good agreement is obtained between the theoretical and measured radiation patterns. Many innovative techniques and processes were developed in order to meet the challenging specifications of a space telecommunication antenna.
2013-08-21
PIER B
Vol. 53, 417-435
Potentialities of Usrp-Based Software Defined Radar Systems
Sandra Costanzo , Francesco Spadafora , Giuseppe Di Massa , Antonio Borgia , Antonio Costanzo , Gianluca Aloi , Pasquale Pace , Valeria Loscri and Hugo Oswaldo Moreno
Software Defined Radar is the latest trend in radar development. To handle enhanced radar signal processing techniques, advanced radars need to be able of generating various types of waveforms, such as frequency modulated or phase coded, and to perform multiple functions. The adoption of a Software Defined Radio system makes easier all these abilities. In this work, the implementation of a Software Defined radar system for target tracking using the USRP platform is discussed. For the first time, an experimental characterization in terms of radar application is performed on the latest USRP NI2920, demonstrating a strongly improved target resolution with respect to the first generation platform.
2013-08-21
PIER B
Vol. 53, 399-415
Generalized Impedance-Transforming Dual-Band Branch-Line Couplers for Arbitrary Coupling Levels
Qiang Liu , Yuan'an Liu , Yongle Wu , Jun-Yu Shen , Shulan Li , Cuiping Yu and Ming Su
High-performance dual-band Doherty power amplifier and non-uniform circularlypolarizedantenna array require impedance-transformingunequal dual-band 90° branch-line couplers forpower dividing and phase shiftingin the feed networks.In this paper, an analytical design methodology of generalized impedance-transforming dual-band branch-line couplers for arbitrary coupling levels is proposed. The coupler features wide range of realizable frequency ratio, multiple flexibleselections of open- or short-circuited and pi- or T-network topologies. For demonstration, four numerical examples with different parameters are presented.Furthermore, two microstrip couplers based on open-circuited pi- and T-network topologies were fabricated and measured.The measured results show good performance at dual 1.8/3.45 GHz bands.Thefractional bandwidthsdefined by the fluctuation of the coupling level and the phase difference less than ±0.5 dB and ±5°are up to 17% and 18%, 18% and 2% for open-circuited pi- and T-network topologies, respectively.
2013-08-21
PIER C
Vol. 43, 1-14
Failure Mode Characterization in Inkjet-Printed CPW Lines Utilizing a High-Frequency Network Analyzer and Post-Processed TDR Analysis
Sami Myllymaki , Jussi Putaala , Jari Hannu , Heli Jantunen , Matti Mantysalo and Esa Kunnari
Failure mode characterization was applied to coplanar transmission lines by utilizing 0.5-10-GHz S-parameter measurements and post-calculated TDR (Time-Domain-Reflectometry) analysis. Coplanar waveguide transmission lines were inkjet-printed on 1.0-mm-thick flexible plastic RF substrates. Inductive, resistive, and capacitive types of failures-as the main failure modes caused by manufacturing, bending, or thermal cycling stresses-were investigated. The inkjet-printed CPW (Co-Planar Waveguide) lines were damaged by inductive shorts due to mechanical hits or resistive and capacitive failures due to bending of the substrate. By using the TDR method the type and physical location of the failure can be determined.
2013-08-21
PIER Letters
Vol. 42, 45-54
An Alternative Method for Difference Pattern Formation in Monopulse Antenna
Jafar Ramadhan Mohammed
Difference patterns are vital for the successful function of tracking radar employing monopulse techniques to estimate target direction. Traditional monopulse antenna pattern synthesis methods require the use of two independent distributions, e.g. Taylor and Bayliss distributions, for formation of sum and difference patterns for one antenna. Hence, these approaches require a feed network of considerable complexity. In this letter, a method for forming difference pattern in linear arrays using a very simple beamforming network and two additional elements is described. The sum pattern is determined by adding signals received by original radiating elements of the array whereas the difference pattern is determined by subtracting the output of the sum pattern from signals received from two external edge elements. The proposed method used to generate these two patterns offers significant hardware and software savings over current methods.
2013-08-21
PIER M
Vol. 32, 181-200
Design of Spiral Circular Coils in Wet and Dry Tissue for Bio-Implanted Micro-System Applications
Saad Mutashar , Mahammad A. Hannan , Salina Abdul Samad and Aini Hussain
This paper deals with the design of small-sized bio-implanted spiral circular coils (pancake) with an operating frequency of 13.56 MHz. The external and internal coils' geometric dimensions are dout = 56 mm, din = 10 mm and dout = 11.6 mm, din = 5 mm, respectively, in which the electrical performance is verified through the commercial field solver High Frequency Structural Simulator (HFSS 13.0), which employs the finite-element method (FEM) technique. Mathematical models for the proposed coils are developed. The simulation is performed-based on the developmental model in the air and at depths 6\,mm in a human biological tissue of dry and wet-skin. The results demonstrate that the external and internal coils have maximum near-field gains of 54.15 dB and 53.30 dB in air. The maximum gains of the external coil contacted the wet and dry skin are 49.80 dB and 48.95 dB, respectively. The maximum gains of the internal coil at depths of 6 mm in the wet and dry tissue are 41.80 dB and 41.40 dB, respectively. However, the external coil radiation efficiencies on wet- and dry-skin are 92% and 90%, respectively, compared with that on air. The internal coil radiation efficiencies on wet- and dry-skin are 78.4% and 77.6%, respectively, compared with that on air. In this study, the specific absorption rate (SAR) and radiated power results of the internal coil are investigated using SEMCAD 16.4 software. The SAR and power loss studies show that the designed implanted coil has a negligible effect on the wet and dry skin and can be ignored.
2013-08-21
PIER
Vol. 142, 107-121
A Hybrid Deterministic/Metaheuristic Synthesis Technique for Non-Uniformly Spaced Linear Printed Antenna Arrays
Diego Caratelli , Maria Carolina Vigano , Giovanni Toso , Piero Angeletti , Alexander A. Shibelgut and Renato Cicchetti
A novel hybrid approach to the synthesis of non-uniformly spaced linear arrays of printed antennas is presented and thoroughly discussed in this paper. In order to account for parasitic mutual coupling between array elements, a dedicated optimization procedure in combination with a multiport network approach is adopted. Selected examples are included in order to assess the effectiveness and versatility of the proposed technique.
2013-08-20
PIER C
Vol. 42, 253-265
High-Dynamic DOA Estimation Based on Weighted L1 Minimization
Wenyi Wang and Renbiao Wu
In high dynamic environment, due to the rapid relative movement between receiver and transmitter, the DOA (Direction of Arrival) of signals will change even between two consecutive snapshots. Thus, covariance-based DOA estimation algorithms are ineffective. Compressive sensing algorithms, as a kind of novel DOA estimation algorithms, are still effective with only one snapshot. At the same time, it is noted that the DOA changing is limited by relative moving speed and distance between receiver and transmitter. In this paper, a DOA tracking algorithm based on weighted L1 minimization is proposed which utilizing the DOA changing scope between two consecutive snapshots as a prior to improve the tracking performance. Different from other multiple snapshots compressive sensing algorithms which assumed fixed DOA among multiple consecutive snapshots, the proposed algorithm takes into account the DOA changing among different snapshots. The simulation results demonstrate the advantages of the proposed algorithm.
2013-08-20
PIER
Vol. 142, 75-105
Attenuation Constants of Radio Waves in Lossy-Walled Rectangular Waveguides
Chenming Zhou , Joseph Waynert , Timothy Plass and Ronald Jacksha
At the ultra-high frequencies (UHF) common to portable radios, the mine tunnel acts as a dielectric waveguide, directing and absorbing energy as a radio signal propagates. Understanding radio propagation behavior in a dielectric waveguide is critical for designing reliable, optimized communication systems in an underground mine. One of the major parameters used to predict the power attenuation in lossy waveguides is the attenuation constant. In this paper, we theoretically and experimentally investigate the attenuation constants for a rectangular waveguide with dielectric walls. We provide a new derivation of the attenuation constant based on the classic Fresnel reflection coefficients. The new derivation takes advantage of ray representation of plane waves and provides more insight into understanding radio attenuation in tunnels. We also investigate the impact of different parameters on the attenuation constant, including the tunnel transverse dimensions, permittivity, conductivity, frequency, and polarization, with an aim to find their theoretical optimal values that result in the minimum power loss. Additionally, measurements of the attenuation constants of the dominant mode at different frequencies (455, 915, 2450, and 5800 MHz) for a straight concrete tunnel are presented and compared to theoretical predictions. It is shown that the analytical results match the measured results very well at all four frequencies.
2013-08-20
PIER
Vol. 142, 57-74
Fast Parameter Estimation Algorithm for Cubic Phase Signal Based on Quantifying Effects of Doppler Frequency Shift
Jibin Zheng , Tao Su , Qing Huo Liu , Long Zhang and Wentao Zhu
For the chirp rate and its change rate estimation of cubic phase signal (CPS), conventional algorithms cannot achieve a trade-off between low computational cost and high performance. In this paper, by utilizing the numerical computational method (NCM), effects of Doppler frequency shift are quantified, and the relationships of the optimal signal length with the chirp rate and change rate of chirp rate are obtained. Then a fast parameter estimation algorithm (DMNUFFT), based on dechirp method (DM) and nonuniform fast Fourier transform (NUFFT), is proposed. Compared with existing algorithms, DMNUFFT can achieve high performance with relatively low computational cost. The performance analyses and an application to inverse synthetic aperture radar (ISAR) imaging are shown to validate the effectiveness of DMNUFFT.
2013-08-20
PIER
Vol. 142, 41-55
A Novel Technique for Broadband Circular Polarized PIFA and Diversity PIFA Systems
Xiao-Zheng Lai , Ze-Ming Xie , Xuan-Liang Cen and Zhiyong Zheng
In this paper, a novel technique for planar inverted-F antenna (PIFA) with broadband circular polarization and pattern diversity is proposed. A defeated ground structure (DGS) has achieved broadband circular polarized (CP) PIFA by using a square branch at the ground corner with arrow-shaped slot. The pattern diversity PIFA system consists of two CP PIFAs placed symmetrically on the diagonal of DGS. Furthermore, the DGS improves port-to-port isolation by using another smaller square branch at the opposite ground corner. Finally, a prototype is fabricated and measured. The measured results agree well with simulation, and show 10-dB matching bandwidth of 16.3% (825-986 MHz), 3-dB axial ratio (AR) bandwidth of 15.5% (830-982 MHz), and 25-dB isolation bandwidth of 12.4% (848-968 MHz), which shows suitability for radio-frequency-identification (RFID) application.
2013-08-19
PIER C
Vol. 42, 239-251
Design of Even-Order Symmetric Bandpass Filter with Chebyshev Response
Kai Wang , Li-Sheng Zheng , Sai Wai Wong , Yu-Fa Zheng and Qing-Xin Chu
This paper proposes a method to design an even-order symmetric bandpass filter with Chebyshev response. The alternative J inverters and λ/4 short-ended resonators are used in the filter design. It is well known that a conventional even-order Chebyshev bandpass filter prototype can be designed by using J-inverters. However, to achieve the Chebyshev response, a problem is that the output admittance YL is unequal to the input admittance Y0 since normalized gn+1 is not equal to the g0. But for the symmetrical structure, an additional impedance transform can be installed at the output port to solve this problem, thus the network of even-order symmetric bandpass filter with a Chebyshev response should be modified with new J-inverters. In this work, all J-inverters of the symmetric bandpass filter with Chebyshev response are extracted and described as curves to determine the circuit dimensions of the proposed structure. Two even-order Chebyshev bandpass filters with the second- and fourth-order are designed with the proposed method as its application examples. Finally, the fourth-order filter is fabricated and measured at center frequency of 2.5 GHz with the fractional bandwidth 25%. The measured result is in good agreement with the simulated one.
2013-08-19
PIER Letters
Vol. 42, 37-44
A Novel Wideband Bandpass Filter Using Stub-Loaded Ring Resonator and Tapped Feed
Dong Chen , Lei Zhu and Chong-Hu Cheng
A compact wideband bandpass filter is proposed in this letter by means of short-circuited-stub loaded ring resonator and tapped feed lines. After the principle of an initial filter with wide operating bandwidth is described, a prototype filter with center frequency at 3.23 GHz and fractional bandwidth of 86.1% is designed and fabricated. Measured results well agree with the predicted ones, verifying the design principle.
2013-08-19
PIER M
Vol. 32, 169-180
Design of Optical Devices Based on Hybrid Periodic/Fibonacci Photonic Crystal in the Visible and the Near Infrared Domains
Abir Mouldi and Mounir Kanzari
In this work, we exploit photonic crystal heterostructures formed by the combination of periodic and Fibonacci structures to design promising optical devices acting in the visible and the near infrared domains. An hybrid structure of the type Bragg mirror-(Fibonacci)S is proposed to enhance the high reflection band through the one dimensional photonic crystal in the near infrared. The use of the configuration exhibits a large photonic band gap at any angle of incidence and for both polarizations. The proposed structure is a quarter wavelength omnidirectional mirror of 37 layers with a bandwidth larger than that of the periodic structure with an increasing ratio 3.7, and it covers all the optical telecommunication wavelengths 0.85, 1.3 and 1.55 μm. Then a second structure of the type Bragg mirror-(Fibonacci)S-Bragg mirror with varied optical thicknesses permits to confine strongly the light giving a rise to a microcavity through the visible range with strong mode localisation. Since different physical phenomena have their own relevant physical scales, we exploit the physical properties of the proposed structures in different wavelength domains to obtain different optical devices. The transmission spectra are determined by using a theoretical model based on the Transfer Matrix Method (TMM).
2013-08-16
PIER Letters
Vol. 42, 23-36
A Compact Tunable Dual-Stop-Band Filter Based on DMS and DGS
Ming Zhong Lin , Qiu-Yi Wu , Zi Han Wu and Xiao-Wei Shi
In this paper, a compact tunable dual-stop-band filter is proposed. The proposed filter is based on the combination of double H-shaped defected ground structure (HDGS) and E-shaped defected microstrip structure (EDMS). The loaded HDGS/EDMS varactor diode is introduced to realize the tunable dual-stop-band filter. The equivalent-circuit models and theoretical analysis of the proposed structure are presented; also its performance evaluation is compared with traditional structure. The proposed filter has the characteristic of two independently adjustable stopbands and wide tuning range. EDMS also shows size reduction up to 38% compared with the T-shaped defected microstrip structure. The measured performance of the tunable dual-stop-band filter agrees well with the simulation results.