1. Hannan, M., M. Saad, A. S. Salina, and H. Aini, "Modulation techniques for biomedical implanted devices and their challenges," Sensor, Vol. 12, 297-319, 2012.
doi:10.3390/s120100297 Google Scholar
2. Wang, G., W. Liu, M. Sivaprakasam, and G. Alperkendir, "Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants," IEEE Trans. Circuits and Syst. I, Vol. 52, 2109-2117, 2005.
doi:10.1109/TCSI.2005.852923 Google Scholar
3. Lee, S. B., H. M. Lee, M. Kiani, U. Jow, and M. Ghovanlo, "An inductively powered scalable 32-channel wireless neural recording system on achip for neuroscience applications," IEEE Trans. Biomed. Circuits and Systems, Vol. 4, 360-371, 2010.
doi:10.1109/TBCAS.2010.2078814 Google Scholar
4. Saad, M., M. A. Hannan, A. Salina, and A. Hussain, "Efficient data and power transfer for bio-implanted devices based on ASK modulation techniques," J. of Mech. in Medi. and Biology., Vol. 12, 1-17, 2012. Google Scholar
5. Chih, K. L., J. C. Jia, L. C. Cho, L. C. Chen, and W. Chua, "An implantable bi-directional wireless transmission system for transcutaneous biological signal recording," Physiol. Meas., Vol. 26, 83-97, 2005.
doi:10.1088/0967-3334/26/1/008 Google Scholar
6. Park, S. I., "Enhancement of wireless power transmission into biological tissue using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013. Google Scholar
7. Gabriel, C., S. Gabriely, and E. Corthout, "The dielectric properties of biological tissues: I, II and III, literature survey," J. of Phys. Med. Biol., Vol. 41, 2231-2293, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
8. Lin, J. C., "Computer methods for field intensity predictions," CRC Handbook of Biological Effects of Electromagnetic Fields,, C. Polk and E. Postow, Eds., Vol. 22, 73-313, CRC Press, Boca Raton, FL, 1986. Google Scholar
9. Karacolak, T., R. Cooper, and E. Topsakal, "Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry," IEEE Trans. on Antennas and Propagation, Vol. 57, 2806-2812, 2009.
doi:10.1109/TAP.2009.2027197 Google Scholar
10. Al Shaheen, A., "New patch antenna for ISM band at 2.45 GHz," ARPN. J. of Eng. and Applied Sciences, Vol. 7, 1-9, 2012.
doi:10.3923/jeasci.2012.1.7 Google Scholar
11. Zhu, F., S. Gao, A. T. S. Ho, C. H. See, R. A. Abd-Alhameed, J. Li, and J.-D. Xu, "Design and analysis of planar ultra-wide and antenna with dual-notched function," Progress In Electromagnetics Research, Vol. 127, 523-536, 2012.
doi:10.2528/PIER12033105 Google Scholar
12. Meysam, Z. and P. G. Gulak, "Maximum achievable efficiency in nearfield coupled power-transfer systems," IEEE Trans. Biomed. Circuits and Systems, Vol. 6, 228-245, 2012.
doi:10.1109/TBCAS.2011.2174794 Google Scholar
13. Uei, M. J. and M. Ghovanloo, "Modeling and optimization of printed spiral coils in air and muscle tissue environments," IEEE 31st Annual International Conference of the (EMBS), 6387-6390, Minneapolis, Minnesota, USA, Sep. 2-6, 2009. Google Scholar
14. Zeng, F. G., S. Rebscher, W. Harrison, X. Sun, and H. Feng, "Cochlear implants: System design, integration, and evaluation," IEEE Rev. Biomed. Eng., Vol. 1, 115-142, 2008.
doi:10.1109/RBME.2008.2008250 Google Scholar
15. Luis, A., F. X. Rui, W. C. Kuang, and J. Minkyu, "Closed loop wireless power transmission for implantable medical device," IEEE 13th International Conference on Integrated Circuits, 404-407, Singapore, Dec. 12-14, 2011. Google Scholar
16. Li, X., H. Zhang, F. Peng, Y. Li, T. Yang, B. Wang, and D. Fang, "A wireless magnetic resonance energy transfer system for micro implantable medical sensors," Sensors, Vol. 12, 10292-10308, 2012.
doi:10.3390/s120810292 Google Scholar
17. Harrison, R. R., P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, "A low-power integrated circuit for a wireless 100-electrode neural recording system," IEEE J. Solid-State Circuits, Vol. 42, 123-133, 2007.
doi:10.1109/JSSC.2006.886567 Google Scholar
18. Clark, G. M., Cochlear Implants: Fundamentals and Applications, Ch. 8, Springer-Verlag, New York , 2003.
doi:10.1007/b97263
19. Humayun, M. S., J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti, G. V. Boemel, G. Dagnelie, and E. Juan, "Visual perception in a blind subject with a chronic microelectronic retinal prosthesis," Vis. Res., Vol. 43, 2573-2581, 2003.
doi:10.1016/S0042-6989(03)00457-7 Google Scholar
20. Finkenzeller, K., RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd Ed., Wiley, New York, 2003.
21. Ko, W. H., S. P. Liang, and C. D. Fung, "Design of radio-frequency powered coil for implanted instruments," Journal of Med. Bio. Eng. Compute., Vol. 15, 634-640, 1977.
doi:10.1007/BF02457921 Google Scholar
22. Mohan, S., D. C. Galbraith, and R. L. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE Trans. Biomed. Eng., Vol. 34, 276-282, 1987. Google Scholar
23. Uei, M. J. and G. Maysam, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Trans. Biomed. Circuits and Systems, Vol. 1, No. 3, 193-202, 2007.
doi:10.1109/TBCAS.2007.913130 Google Scholar
24. Grover, F. W., Inductance Calculations: Working Formulas and Tables, D. Van Nostrand Co., New York, 1946.
25. Harrison, R. R., "Designing efficient inductive power links for implantable devices," IEEE International Conference on Circuits and Systems, 2080-2083, New Orleans, USA, May 27-30, 2007. Google Scholar
26. Silay, K. M., C. Dehollaini, and M. Declercq, "Improvement of power efficiency of inductive links for implantable devices," IEEE Conference on Research in Microelectronics and Electronics, 229-232, Istanbul, Turkey, Apr. 22-25, 2008. Google Scholar
27. Mohan, S., M. Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE J. Solid-State Circuits, Vol. 34, 1419-1424, 1999.
doi:10.1109/4.792620 Google Scholar
28. Felippa, C. A., "Introduction to finite element method,", Available online at http://caswww.colorado.edu/courses.d/IFEM.d/IFEM.Ch01.d/IFEM.Ch01.pdf. Google Scholar
29. IEEE C95.1-2005 "IEEE standards for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,", Institute of Electrical and Electronics Engineers, New York, 2005. Google Scholar
30. Lazzi, G., "Power dissipation characteristics and computational methods," IEEE Journal of Engineering in Medicine and Biology Magazine, 75-81, 2005.
doi:10.1109/MEMB.2005.1511503 Google Scholar
31. Fujimoto, M., A. Hirata, J. Wang, O. Fujiwara, and T. Shiozawa, "FDTD-derived correlation of maximum temperature increase and peak SAR in child and adult head models due to dipole antenna," IEEE Trans. on Electromagnetic Compatibility, Vol. 48, No. 1, 240-247.
doi:10.1109/TEMC.2006.870816 Google Scholar
32. Office of Engineering Technology "Understanding the FCC regulations for low-power, non-licensed transmitters,", OET Bulletin No. 63, Oct. 1993. Google Scholar