1. Mazar, R., A. Bronshtein, and I. T. Lu, "Theoretical analysis of UHF propagation in a city street modeled as a random multislit waveguide," IEEE Transactions on Antennas and Propagation, Vol. 46, 864-871, Jun. 1998.
doi:10.1109/8.686775 Google Scholar
2. Porrat, D., "Radio propagation in hallways and streets for UHF communications,", Ph.D. Dissertation, Stanford University, 2002. Google Scholar
3. Kyritsi, P. and D. C. Cox, "Propagation characteristics of horizontally and vertically polarized electric fields in an indoor environment: Simple model and results," IEEE 54th Vehicular Technology Conference, VTC Fall, 1422-1426, 2001. Google Scholar
4. Didascalou, D., R. Maurer, and W. Wiesbeck, "Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies," IEEE Transactions on Antennas and Propagation, Vol. 49, 1590-1596, Nov. 2001.
doi:10.1109/8.964095 Google Scholar
5. Masson, E., Y. Cocheril, P. Combeau, L. Aveneau, M. Berbineau, R. Vauzelle, et al. "Radio wave propagation in curved rectangular tunnels at 5.8 GHz for metro applications, simulations and measurements," Eurasip Journal on Wireless Communications and Networking, Dec. 2011. Google Scholar
6. Zhang, Y. P., Z. R. Jiang, T. S. Ng, and J. H. Sheng, "Measurements of the propagation of UHF radio waves on an underground railway train," IEEE Transactions on Vehicular Technology, Vol. 49, 1342-1347, Jul. 2000.
doi:10.1109/25.875255 Google Scholar
7. Han, G. R., W. M. Zhang, and Y. P. Zhang, "An experiment study of the propagation of radio waves in a scaled model of long-wall coal mining tunnels," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 502-504, 2009.
doi:10.1109/LAWP.2009.2020312 Google Scholar
8. Lienard, M. and P. Degauque, "Natural wave propagation in mine environments," IEEE Transactions on Antennas and Propagation, Vol. 48, 1326-1339, Sep. 2000.
doi:10.1109/8.898765 Google Scholar
9. Shanklin, J. P., "VHF railroad communications in tunnels," Communications, Vol. 27, 16-19, Jun. 1947. Google Scholar
10. Emslie, A., R. Lagace, and P. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Transactions on Antennas and Propagation,, Vol. 23, 192-205, 1975.
doi:10.1109/TAP.1975.1141041 Google Scholar
11. Mahmoud, S. F. and J. R.Wait, "Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels," Radio Science, Vol. 9, 1147-1158, 1974.
doi:10.1029/RS009i012p01147 Google Scholar
12. United States Public Laws, PL 109-236, Mine Improvement and New Emergency Response Act of 2006 (MINER Act), 2006.
13. Zhou, C., J. Waynert, T. Plass, and R. Jacksha, "Modeling RF propagation in tunnels," IEEE International Symposium on Antennas and Propagation (APS2013), 1917-1918, Orlando, FL, 2013. Google Scholar
14. Plass, T., R. Jacksha, J. Waynert, and C. Zhou, "Measurement of RF propagation in tunnels," IEEE International Symposium on Antennas and Propagation (APS 2013), 1604-1605, Orlando, FL, 2013. Google Scholar
15. Marcatili, E. A. J. and R. A. Schemeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., Vol. 43, 1783-1809, Jul. 1964.
doi:10.1002/j.1538-7305.1964.tb04108.x Google Scholar
16. Laakmann, K. D. and W. H. Steier, "Waveguides: Characteristic models of hollow rectangular dielectric waveguides," Applied Optics, 1334-1340, May 1976.
doi:10.1364/AO.15.001334 Google Scholar
17. Dudley, D. G., M. Lienard, S. F. Mahmoud, and P. Degauque, "Wireless propagation in tunnels," IEEE Antennas and Propagation Magazine, Vol. 49, No. 11-26, Apr. 2007. Google Scholar
18. Didascalou, D., T. M. Schafer, F. Weinmann, and W. Wiesbeck, "Ray-density normalization for ray-optical wave propagation modeling in arbitrarily shaped tunnels," IEEE Transactions on Antennas and Propagation, Vol. 48, 1316-1325, Sep. 2000.
doi:10.1109/8.898764 Google Scholar
19. Mahmoud, S. F., "Modal propagation of high frequency electromagnetic waves in straight and curved tunnels within the earth," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1611-1627, 2005.
doi:10.1163/156939305775537401 Google Scholar
20. Yamaguchi, Y., T. Abe, T. Sekiguchi, and J. Chiba, "Attenuation constants of UHF radio-waves in arched tunnels," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, 714-718, 1985.
doi:10.1109/TMTT.1985.1133062 Google Scholar
21. Kermani, M. H. and M. Kamarei, "A ray-tracing method for predicting delay spread in tunnel environments," IEEE International Conference on Personal Wireless Communications, 538-542, 2000. Google Scholar
22. Uchida, K., C. K. Lee, T. Matsunaga, T. Imai, and T. Fujii, "A ray tracing method for evaluating field distribution in tunnels," Electronics and Communications in Japan (Part I: Communications), Vol. 83, 11-18, 2000.
doi:10.1002/(SICI)1520-6424(200010)83:10<11::AID-ECJA2>3.0.CO;2-N Google Scholar
23. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Transactions on Communications, Vol. 58, 1758-1768, Jun. 2010.
doi:10.1109/TCOMM.2010.06.080353 Google Scholar
24. Fuschini, F. and G. Falciasecca, "A mixed rays-modes approach to the propagation in real road and railway tunnels," IEEE Transactions on Antennas and Propagation, Vol. 60, 1095-1105, Feb. 2012.
doi:10.1109/TAP.2011.2173137 Google Scholar
25. Emslie, A., R. Lagace, and P. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Transactions on Antennas and Propagation, Vol. 23, 192-205, 1975.
doi:10.1109/TAP.1975.1141041 Google Scholar
26. Loyka, S., "Multiantenna capacities of waveguide and cavity channels," IEEE Transactions on Vehicular Technology, Vol. 54, 863-872, May 2005.
doi:10.1109/TVT.2005.844640 Google Scholar
27. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.
28. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.
29. Schaubach, K. R., N. J. Davis, and T. S. Rappaport, "A ray tracing method for predicting path loss and delay spread in microcellular environments," IEEE 42nd Vehicular Technology Conference, 932-935, May 1992. Google Scholar
30. Chen, S. H. and S. K. Jeng, "SBR image approach for radio wave propagation in tunnels with and without traffic," IEEE Transactions on Vehicular Technology, Vol. 45, 570-578, Aug. 1996.
doi:10.1109/25.533772 Google Scholar
31. Mahmoud, S. F., "On modal propagation of high frequency electromagnetic waves in straight and curved tunnels," IEEE Antennas and Propagation Society Symposium, 2963-2966, 2004. Google Scholar
32. Alonso, J., B. Izquierdo, and J. Romeu, "Break point analysis and modelling in subway tunnels," 3rd European Conference on Antennas and Propagation (EuCAP 2009), 3254-3258, 2009. Google Scholar
33. Dudley, D. G. and H. Y. Pao, "System identification for wireless propagation channels in tunnels," IEEE Transactions on Antennas and Propagation, Vol. 53, 2400-2405, Aug. 2005.
doi:10.1109/TAP.2005.852286 Google Scholar
34. Guan, K., Z. D. Zhong, B. Ai, and C. Briso-Rodriguez, "Propagation mechanism analysis before the break point inside tunnels," IEEE Vehicular Technology Conference (VTC2011 Fall), 1-5, Sep. 5-8, 2011. Google Scholar
35. Klemenschits, T. and E. Bonek, "Radio coverage of road tunnels at 900 and 1800MHz by discrete antennas," Wireless Networks - Catching the Mobile Future, Proceedings, Vol. I-Iv, 411-415, 1994. Google Scholar