Vol. 32
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-08-23
Interference Interaction of Counter-Propagating Pulses on a Magneto-Dielectric Slab
By
Progress In Electromagnetics Research M, Vol. 32, 201-213, 2013
Abstract
Dynamics of interference interaction of counter-propagating electromagnetic pulses on a magneto-dielectric slab is studied in time domain. Energy redistribution in the counter-propagating pulses with arbitrary waveforms is considered. The maximal energy redistribution in the diffracted field takes place under certain conditions. The conditions are found and their physical explanation is supplied. The problem of transient electromagnetic wave diffraction on homogeneous magneto-dielectric slab is solved analytically by means of Laplace transform. The analytical solution is in agreement with numerical simulation based on finite difference time domain approach.
Citation
Bogdan A. Kochetov, "Interference Interaction of Counter-Propagating Pulses on a Magneto-Dielectric Slab," Progress In Electromagnetics Research M, Vol. 32, 201-213, 2013.
doi:10.2528/PIERM13072404
References

1. Born, M. and E. Wolf, Principles of Optics, University Press, Cambridge, 2003.

2. Kolokolov, A. A. and G. V. Skrotskii, "Interference of reactive components of an electromagnetic field," Physics-Uspekhi, Vol. 35, No. 12, 1089-1093, 1992.
doi:10.1070/PU1992v035n12ABEH002282        Google Scholar

3. Sidorenkov, V. V. and V. V. Tolmachev, "Effects of tunnel electromagnetic interference in metal films," Pisma v Zhurnal Tekhnicheskoi Fiziki, Vol. 15, No. 21, 34-37, 1989 (in Russian).        Google Scholar

4. Sidorenkov, V. V. and V. V. Tolmachev, "Effects of electromagnetic interference in metal plates," Pisma v Zhurnal Tekhnicheskoi Fiziki, Vol. 16, No. 3, 20-24, 1990 (in Russian).        Google Scholar

5. Sementsov, D. I., V. V. Efimov, and S. A. Afanas'ev, "Tunneling electromagnetic interference under conditions of ferromagnetic," Technical Physics Letters, Vol. 19, No. 6, 327-329, 1993.        Google Scholar

6. Afanas'ev, S. A. and D. I. Sementsov, "Tunneling interference of counterpropagating waves in the region of negative magnetic permeability," Technical Physics, Vol. 42, No. 10, 1181-1183, 1997.
doi:10.1134/1.1258798        Google Scholar

7. Strashevskyi, A. V., V. B. Kazansky, and V. R. Tuz, "Interference interaction of counter-propagating coherent waves in a photon crystal with a ferrite insert," Radio Physics and Radio Astronomy, Vol. 2, No. 4, 353-358, 2011.
doi:10.1615/RadioPhysicsRadioAstronomy.v2.i4.80        Google Scholar

8. Sannikov, D. G. and D. I. Sementsov, "Interference of counterpropagating waves in a nonreciprocal chiral medium," Technical Physics Letters, Vol. 33, No. 12, 996-999, 2007.
doi:10.1134/S1063785007120048        Google Scholar

9. Miller, K. S. and R. J. Schwarz, "On the interference of pulse trains," J. Appl. Phys., Vol. 24, No. 8, 1-5, 1953.
doi:10.1063/1.1721430        Google Scholar

10. Narahara, K., "Interaction of nonlinear pulses developed in coupled transmission lines regularly spaced Schottky varactors," Progress In Electromagnetics Research Letters, Vol. 17, 85-93, 2010.
doi:10.2528/PIERL10072611        Google Scholar

11. Novitsky, D. V., "Pulse trapping inside a one-dimensional photonic crystal with relaxing cubic nonlinearity," Phys. Rev. A, Vol. 81, No. 053814, 1-7, 2010.        Google Scholar

12. Novitsky, D. V., "Asymmetric light transmission through a photonic crystal with relaxing Kerr nonlinearity," Europhysics Letters, Vol. 99, No. 44001, 1-6, 2012.        Google Scholar

13. Centini, M., G. D'Aguanno, M. Scalora, M. J. Bloemer, C. M. Bowden, C. Sibilia, N. Mattiucci, and M. Bertolotti, "Dynamics of counterpropagating pulses in photonic crystals: Enhancement and suppression of stimulated emission processes," Phys. Rev. E, Vol. 67, No. 036617, 1-4, 2003.        Google Scholar

14. Masalov, S., O. Puzanov, and A. Timchenko, "The diffraction of video pulses on dielectric slabs," Proc. 6-th Int. Conf. Mathematical Methods in Electromagnetic Theory, 108-111, Lvov, Ukraine, 1996.        Google Scholar

15. Schiff, J. L., The Laplace Transform: Theory and Applications, Springer-Verlag, New York, 1999.

16. Tafove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, London, 2000.