Vol. 53
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-08-21
Generalized Impedance-Transforming Dual-Band Branch-Line Couplers for Arbitrary Coupling Levels
By
Progress In Electromagnetics Research B, Vol. 53, 399-415, 2013
Abstract
High-performance dual-band Doherty power amplifier and non-uniform circularlypolarizedantenna array require impedance-transformingunequal dual-band 90° branch-line couplers forpower dividing and phase shiftingin the feed networks.In this paper, an analytical design methodology of generalized impedance-transforming dual-band branch-line couplers for arbitrary coupling levels is proposed. The coupler features wide range of realizable frequency ratio, multiple flexibleselections of open- or short-circuited and pi- or T-network topologies. For demonstration, four numerical examples with different parameters are presented.Furthermore, two microstrip couplers based on open-circuited pi- and T-network topologies were fabricated and measured.The measured results show good performance at dual 1.8/3.45 GHz bands.Thefractional bandwidthsdefined by the fluctuation of the coupling level and the phase difference less than ±0.5 dB and ±5°are up to 17% and 18%, 18% and 2% for open-circuited pi- and T-network topologies, respectively.
Citation
Qiang Liu, Yuan'an Liu, Yongle Wu, Jun-Yu Shen, Shulan Li, Cuiping Yu, and Ming Su, "Generalized Impedance-Transforming Dual-Band Branch-Line Couplers for Arbitrary Coupling Levels," Progress In Electromagnetics Research B, Vol. 53, 399-415, 2013.
doi:10.2528/PIERB13061717
References

1. Reed, J. and G. J. Wheeler, "A method of analysis of symmetrical four-port networks," IEEE Trans. on Microw. Theory and Tech., Vol. 4, No. 4, 246-252, Oct. 1956.
doi:10.1109/TMTT.1956.1125071        Google Scholar

2. Cheng, K. K. M. and F. L. Wong, "A novel approach to the design and implementation of dual-band compact planar 90o branch-line coupler," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 11, 2458-2463, Nov. 2004.
doi:10.1109/TMTT.2004.837151        Google Scholar

3. Zhang, H. L. and K. J. Chen, "A stub tapped branch-line coupler for dual-band operations," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 2, 106-108, Feb. 2007.
doi:10.1109/LMWC.2006.890330        Google Scholar

4. Chin, K. S., K. M. Lin, Y. H. Wei, T. H. Tseng, and Y. J. Yang, "Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines," IEEE Trans. on Microw. Theory and Tech., Vol. 58, No. 5, 1213-1221, May 2010.
doi:10.1109/TMTT.2010.2046064        Google Scholar

5. Lin, I. H., M. De Vincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 4, 1142-1149, Apr. 2004.
doi:10.1109/TMTT.2004.825747        Google Scholar

6. Kim, H., B. Lee, and M. J. Park, "Dual-band branch-line coupler with port extensions," IEEE Trans. on Microw. Theory and Tech., Vol. 58, No. 3, 651-655, Mar. 2010.
doi:10.1109/TMTT.2010.2040342        Google Scholar

7. Lin, F. and Q. X. Chu, "Tri-band branch-line coupler with T-type and additional port impedance transformers," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 8-14, Jul. 2012.

8. Piazzon, L., P. Saad, P. Colantonio, F. Giannini, K. Andersson, and C. Fager, "Branch-line coupler design operating in four arbitrary frequencies," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 2, 67-69, Feb. 2012.
doi:10.1109/LMWC.2011.2181349        Google Scholar

9. Lee, S. and Y. Lee, "Wideband branch-line couplers with single-section quarter-wave transformers for arbitrary coupling levels," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 1, 19-21, Jan. 2012.
doi:10.1109/LMWC.2011.2176723        Google Scholar

10. Hsu, C. L., J. T. Kuo, and C. W. Chang, "Miniaturized dual-band hybrid couplers with arbitrary power division ratios," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 1, 149-156, Jan. 2009.
doi:10.1109/TMTT.2008.2009036        Google Scholar

11. Gupta, R. K., S. E. Anderson, and W. J. Getsinger, "Impedance-transforming 3-dB 90o hybrids," IEEE Trans. on Microw. Theory and Tech., Vol. 35, No. 12, 1303-1307, Dec. 1987.
doi:10.1109/TMTT.1987.1133852        Google Scholar

12. Kumar, S., C. Tannous, and D. Tom, "A multisection broadband impedance transforming branch-line hybrid," IEEE Trans. on Microw. Theory and Tech., Vol. 43, No. 11, 2517-2523.
doi:10.1109/22.473172        Google Scholar

13. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "Quasi-arbitrary phase-difference hybrid coupler," IEEE Trans. on Microw. Theory and Tech., Vol. 60, No. 6, 1530-1539, Jun. 2012.
doi:10.1109/TMTT.2012.2187918        Google Scholar

14. Wu, Y., J. Shen, and Y. Liu, "Comments on `Quasi-arbitrary phase-difference hybrid coupler'," IEEE Trans. on Microw. Theory and Tech., Vol. 61, No. 4, 1725-1727, Apr. 2013.
doi:10.1109/TMTT.2013.2247771        Google Scholar

15. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "Multifolded bandwidth branch line coupler with filtering characteristic using coupled port feeding," Progress In Electromagnetics Research, Vol. 118, 17-35, 2011.
doi:10.2528/PIER11041401        Google Scholar

16. Cheng, Y. J., L. Wang, J. Wu, and Y. Fan, "Directional coupler with good restraint outside the passband and its frequency-agile application," Progress In Electromagnetics Research, Vol. 135, 759-771, 2013.        Google Scholar

17. Rawat, K. and F. M. Ghannouchi, "Design methodology for dual-band doherty power amplifier with performance enhancement using dual-band offset lines," IEEE Trans. on Industrial Electronics, Vol. 59, No. 12, 4831-4842, Dec. 2012.
doi:10.1109/TIE.2011.2176695        Google Scholar

18. Jung, Y. K. and B. Lee, "Dual-band circularly polarized microstrip RFID reader antenna using metamaterial branch-line coupler," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 786-791, Feb. 2012.
doi:10.1109/TAP.2011.2167943        Google Scholar

19. Garcia-Aguilar, A., J. Inclan-Alonso, L. Vigil-Herrero, J. Fernandez-Gonzalez, and M. Sierra-Perez, "Low-profile dual circularly polarized antenna array for satellite communications in the X band," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2276-2284, May 2012.
doi:10.1109/TAP.2012.2189729        Google Scholar

20. Wu, G. L., W. Mu, G. Zhao, and Y. C. Jiao, "A novel design of dual circularly polarized antenna FED by L-strip," Progress In Electromagnetics Research, Vol. 79, 39-46, 2008.
doi:10.2528/PIER07092001        Google Scholar

21. Ahn, H. R. and B. Kim, "Toward integrated circuit size reduction," IEEE Microw. Mag., Vol. 9, No. 1, 65-75, Feb. 2008.
doi:10.1109/MMM.2007.910937        Google Scholar

22. Ahn, H. R. and I. Wolff, "Asymmetric four-port and branch-line hybrids," IEEE Trans. on Microw. Theory and Tech., Vol. 48, No. 9, 1585-1588, Sep. 2000.
doi:10.1109/22.869013        Google Scholar

23. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 4, 1157-1161, Apr. 2003.
doi:10.1109/TMTT.2003.809675        Google Scholar