1. Toliyat, H. A., T. A. Lipo, and J. C. White, "Analysis of a concentrated winding induction machine for adjustable speed drive applications, part-1 (motor analysis)," IEEE Trans. on Energy Conversion, Vol. 6, 679-692, Dec. 1991.
doi:10.1109/60.103641 Google Scholar
2. Toliyat, H. A. and T. A. Lipo, "Transient analysis of cage induction machines under stator, rotor bar and end ring faults," IEEE Trans. on Energy Conversion, Vol. 10, No. 2, 241-247, Jun. 1995.
doi:10.1109/60.391888 Google Scholar
3. Milimonfared, J., H. M. Kelk, A. Der Minassians, S. Nandi, and H. A. Toliyat, "A novel approach for broken bar detection in cage induction motors ," IEEE Trans. on Industry Applications, Vol. 35, 1000-1006. Google Scholar
4. Joksomovic, M. G. and J. Penman, "The detection of inter turn short circuits in the stator windings of operating motors," IEEE Trans. on Industry Application, Vol. 47, 1078-1084, Oct. 2000. Google Scholar
5. Al-Nuim, N. A. and H. A. Toliyat, "A novel method for modeling dynamic air-gap eccentricity in synchronous machines based on modified winding function theory ," IEEE Trans. on Energy Conversion, Vol. 13, 156-162, Jun. 1998.
doi:10.1109/60.678979 Google Scholar
6. Serrano-Iribarnegaray, L., P. Cruz-Romero, and A. Gomez-Exposito, "Critical review of the modified winding function theory," Progress In Electromagnetics Research, Vol. 133, 515-534, 2013. Google Scholar
7. Nandi, S., S. Ahmed, and H. A. Toliyat, "Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages," IEEE Trans. on Energy Conversion, Vol. 16, 253-260, 2001.
doi:10.1109/60.937205 Google Scholar
8. Nandi, S., R. Bharadwaj, and H. A. Toliyat, "Performance analysis of three phase induction motor under mixed eccentricity condition," IEEE Trans. on Energy Conversion, Vol. 17, 392-399, Sep. 2002.
doi:10.1109/TEC.2002.801995 Google Scholar
9. Tabatabaei, I., J. Faiz, H. Lesani, and M. T. Nabavi-Razavi, "Modeling and simulation of a salient pole synchronous generator with dynamic eccentricity using modified winding function approach," IEEE Trans. on Magnetics, Vol. 40, No. 3, 1550-1555, May 2004.
doi:10.1109/TMAG.2004.826611 Google Scholar
10. Akbari, H., J. Milimonfared, and H. Meshgin Kelk, "A novel technique for the computation of inductances of salient pole machines under different eccentricity conditions," Electric Power Components and Systems, Vol. 39, No. 14, 1507-1522, 2011.
doi:10.1080/15325008.2011.596752 Google Scholar
11. Faiz, J., B. M. Ebrahimi, M. Valavi, and H. A. Toliyat, "Mixed eccentricity fault diagnosis in salient pole synchronous generator using modified winding function method," Progress In Electromagnetics Research B, Vol. 11, 155-172, 2009.
doi:10.2528/PIERB08110903 Google Scholar
12. Akbari, H., "An improved analytical model for salient pole synchronous machines under general eccentricity fault," Progress In Electromagnetics Research B, Vol. 49, 389-409, 2013. Google Scholar
13. Faiz, J., I. T. Ardekani, and H. A. Toliyat, "An evaluation of inductances of a squirrel-cage induction motor under mixed eccentric conditions," IEEE Trans. on Energy Conversion, Vol. 18, No. 2, 252-258, Jun. 2003.
doi:10.1109/TEC.2003.811740 Google Scholar
14. Meshgin Kelk, H., J. Milimonfared, and H. A. Toliyat, "A Comprehensive method for the calculation of inductance coefficients of cage induction machines," IEEE Trans. on Energy Conversion, Vol. 18, No. 2, 187-193, Jun. 2003.
doi:10.1109/TEC.2003.811734 Google Scholar
15. Joksimovic, G. M., M. Durovic, J. Penman, and N. Arthur, "Dynamic simulation of dynamic eccentricity in induction machines-winding function approach," IEEE Trans. on Energy Conversion, Vol. 15, No. 2, 143-148, 2000.
doi:10.1109/60.866991 Google Scholar
16. Joksimovic, G., "Dynamic simulation of cage induction machine with air gap eccentricity," IEE Proc. Electr. Power Appl., Vol. 152, No. 4, 803-811, 2005.
doi:10.1049/ip-epa:20041229 Google Scholar
17. Faiz, J. and M. Ojaghi, "Unified winding function approach for dynamic simulation of different kinds of eccentricity faults in cage induction machines," IET Electr. Power Appl., Vol. 3, No. 5, 461-470, 2009.
doi:10.1049/iet-epa.2008.0206 Google Scholar
18. Ghoggal, A., S. E. Zouzou, M. Sahraoui, H. Derghal, and A. Hadri-Hamida, "A winding function-based model of air-gap eccentricity in saturated induction motors," International Conference on Electrical Machines, 2739-2745, 2012, DOI: 10.1109/ICElMach.2012.6350274. Google Scholar
19. Bossio, G., C. D. Angelo, J. Solsona, G. Garcia, and M. I. Valla, "A 2-D model of the induction machine: An extension of the modified winding function approach," IEEE Trans. on Energy Conversion, Vol. 19, No. 1, 144-150, Mar. 2004.
doi:10.1109/TEC.2003.822294 Google Scholar
20. Li, X. D. and S. Nandi, "Analysis of a 3-phase induction machine with inclined static eccentricity," IEEE International Conference on Electric Machines and Drives, 1606-1613, 2005, DOI:10.1109/IEMDC.2005.195934.
21. Li, E. and S. Nandi, "Performance analysis of a three phase induction machine with inclined static eccentricity," IEEE Trans. on Industry Application, Vol. 43, No. 2, 531-541, 2007.
doi:10.1109/TIA.2006.889806 Google Scholar
22. Kaikaa, M. and M. Hadjami, "Effects of the simultaneous presence of static eccentricity and broken rotor bars on the stator current of induction machine," IEEE Trans. on Industrial Electronics, 2013, DOI:10.1109/TIE.2013.2270216. Google Scholar
23. Akbari, H., H. Meshgin-Kelk, and J. Milimonfared, "Extension of winding function theory for radial and axial non-uniform air gap in salient pole synchronous machines," Progress In Electromagnetics Research, Vol. 114, 407-428, 2011. Google Scholar
24. Nandi, S., "Modeling of induction machines including stator and rotor slot effects," IEEE Trans. on Industry Applications, Vol. 40, No. 4, 1058-1065, 2004.
doi:10.1109/TIA.2004.830764 Google Scholar