Search Results(13673)

2012-04-04
PIER Letters
Vol. 30, 195-203
Compact Dual-Mode Filter Using Meander Shorted Stub Loaded Resonators
Chen-Xia Sun , Li-Ying Feng , Xin-Yue Liu and Hong-Xing Zheng
To reduce the size and improve the performance, a 4th-order miniaturized dual-mode microstrip bandpass filter (BPF) is developed. A meander shorted stub loaded resonator is used, and much compact size is obtained. Theoretical model is set up, and the odd and even modes of the BPF are analyzed based on a symmetrical structure. Full wave simulation validates the design method. To verify the design, a fabricated BPF sample has been tested. Experiment result demonstrates that the designed BPF has wider stopband and better selectivity. Its fractional bandwidth and a center frequency are available.
2012-04-04
PIER C
Vol. 28, 143-153
A Compact CPW-Fed Koch Snowflake Fractal Antenna for WLAN/WiMAX Applications
Dong Li , Fu-Shun Zhang , Zong-Ning Zhao , Liu-Tao Ma and Xu Nan Li
A dual wideband CPW-fed slotted Koch snowflake fractal monopole, which is suitable for WLAN/WiMAX applications, is presented. The proposed antenna has been analyzed and designed with Ansoft HFSSTM v.11. Then an experimental prototype is fabricated and measured. It is compact with a total size of 41.5 mm × 27 mm × 1 mm (L×W×T). Results of simulation and measurement indicate that the proposed fractal monopole with a U-shaped slot has dual impedance bandwidths 2.35-4.25 GHz and 4.8-5.95 GHz, which covers WLAN bands (2.4/5.2/5.8GHz) and the WiMAX bands (2.5/3.5/5.5 GHz) respectively. In addition, good radiation performances such as omnidirectional and doughnut-shaped directivity and goodish gain over the operating bands have been obtained.
2012-04-04
PIER C
Vol. 28, 127-142
Alginate Beads and Epoxy Resin Composites as Candidates for Microwave Absorbers
Irena Zivkovic , Christine Wandrey and Biljana Bogicevic
This paper presents a new composite material, which is developed by mixing calcium alginate spheres with commercially available epoxies Stycas 2850 FT (s2850) and Stycast W19 (W19). The resulting composite material is examined in terms of transmission and reflection coefficients in microwave frequencies (26 to 40 GHz, 70 to 110 GHz and 300 to 320 GHz). The study reveals that the new material exhibits reflection coefficients much lower than some commercial CR absorbers from the Eccosorb group. The experimental results justify the use of the new composite material as absorber at microwave frequencies.
2012-04-04
PIER M
Vol. 24, 69-84
Electromagnetic Waves Scattering and Radiation by Vibrator-Slot Structure in a Rectangular Waveguide
Mikhail Nesterenko , Victor A. Katrich , Dmitriy Yu. Penkin , Sergey L. Berdnik and Victor I. Kijko
A problem of electromagnetic waves scattering and radiation by a structure, consisting of a narrow transverse slot in broad wall of rectangular waveguide and a vibrator with variable surface impedance, located inside the waveguide and interacting with one another, is solved. A solution of integral equations for electric current on the vibrator and equivalent magnetic current in the slot is derived by the generalized method of induced electro-magneto-motive forces. Conditions necessary for achievement of maximal slot radiation coefficient are defined. Effectiveness of impedance vibrators application to ensure required level of radiation by vibrator-slot structure in low profile rectangular waveguides is shown. Calculated and experimental plots of energy characteristics of the vibrator-slot structure for different vibrator placement relative to the slot and for various surface impedance dependencies upon the vibrator length are presented.
2012-04-04
PIER
Vol. 126, 539-553
A New Plasma Antenna of Beam-Forming
Xiao Po Wu , Jia-Ming Shi , Zong Sheng Chen and Bo Xu
In this paper, a new plasma antenna of beam-forming is investigated based upon the interaction of plasma elements due to the electromagnetic wave. It presents a study of the multiple scattering from argon plasma cylinders rigorously applying boundary value method, grounded on the properties of electromagnetic wave transmitted in the argon plasma. Approximate expressions for the total radiation of plasma antenna in the far field are derived briefly. Also presented is a study that this new antenna of beam-forming exhibits interesting performance in terms of radiation efficiency, beam-forming and beam-scanning. Valid results are brought forth to demonstrate the capabilities of such antenna of two scales. Comparisons are given in detail as well.
2012-04-04
PIER
Vol. 126, 521-538
Investigation of Effective Plasma Frequencies in One-Dimensional Plasma Photonic Crystals
Chien-Jang Wu , Tzong-Jer Yang , Chang Ching Li and Pei Yu Wu
In this work, a detailed investigation on the effective plasma frequency fp,eff for one-dimensional binary and ternary plasma-dielectric photonic crystals is made. We extract and then analyze the effective plasma frequency from the calculated photonic band structures at distinct conditions. In the binary photonic crystal, it is found that fp,eff in a photonic crystal is usually smaller than the plasma frequency fp of a bulk plasma system. fp,eff will increase when the electron concentration in the plasma layer increases. It also increases as the thickness of the plasma layer increases, but decreases with the increase in the thickness of dielectric layer. In the ternary photonic crystal, fp,eff is shown to be decreased compared to that of in the binary one. Our results are compared with the analytical expression for fp,eff derived from the concept of effective medium. Fairly good consistence has been obtained for both results. Additionally, a discussion on the effect of loss on fp,eff is also given. The study is limited to the case of normal incidence.
2012-04-04
PIER
Vol. 126, 499-519
A Comparison Between PML, Infinite Elements and an Iterative BEM as Mesh Truncation Methods for Hp Self-Adaptive Procedures in Electromagnetics
Ignacio Gomez-Revuelto , Luis E. Garcia-Castillo and Leszek F Demkowicz
Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.
2012-04-03
PIER B
Vol. 39, 373-392
Variational SAR Image Segmentation Based on the G0 Model and an Augmented Lagrangian Method
Jilan Feng , Zongjie Cao and Yiming Pi
This paper present a fast algorithm for synthetic aperture radar (SAR) image segmentation based on the augmented Lagrangian method (ALM). The proposed approach considers the segmentation of SAR images as an energy minimization problem in a variational framework. The energy functional is formulated based on the statistical characteristic of SAR images. The total variation regularization is used to impose the smoothness constraint of the segmentation result. To solve the optimization problem efficiently, the energy functional is firstly modified to be convex and differentiable by using convex relaxing and variable splitting techniques, and then the constrained optimization problem is converted to an unconstrained one by using the ALM. Finally the energy is minimized with an iterative minimization algorithm. The effectiveness of the proposed algorithm is validated by experiments on both synthetic and real SAR images.
2012-04-03
PIER Letters
Vol. 30, 185-193
Dual-Band CPW-Fed Circularly-Polarized Slot Antenna for Dmb/WiMAX Application
Feng-Xiang Wu , Wei-Mei Li and Si-Ming Zhang
A novel dual-band circularly-polarized slot antenna fed by a coplanar waveguide (CPW) is presented for digital multimedia broadcasting (2.6 GHz) and Worldwide Interoperability for Microwave Access (3.5 GHz) application. The circular polarization in the lower band is achieved by the slots loaded in two opposite corners, and corner truncation of the square slot can offer a current path for the upper band. Experimental results show that the measured impedance bandwidths (VSWR ≤ 2) are 18.5% for the lower band and 19.1% for the upper band, and the measured 3 dB axial-ratio bandwidths are 22.3% and 18.3%, with respect to 2.6 GHz and 3.5 GHz, respectively.
2012-04-02
PIER Letters
Vol. 30, 173-184
The Extension of the Maxwell Garnett Mixing Rule for Dielectric Composites with Nonuniform Orientation of Ellipsoidal Inclusions
Bartlomiej Salski
This paper presents the extension of the Maxwell Garnett effective medium model accounting for an arbitrary orientation of ellipsoidal inclusions. The proposed model is shown to be asymptotically convergent to the Maxwell Garnett mixing rule for a homogenous distribution of inclusions. Subsequently, a special case of a thin composite layer with a two-dimensional distribution of inclusions is considered and a simplified Maxwell Garnett formula is formally derived. The proposed model is validated against the alternative theoretical calculations and measurements data.
2012-04-02
PIER
Vol. 126, 481-497
Adaptive Sampling in Multilevel Plane Wave Based Near-Field Far-Field Transformed Planar Near-Field Measurements
Muhammad Ayyaz Qureshi , Carsten H. Schmidt and Thomas F. Eibert
An adaptive approach to minimize acquisition time in planar near-field antenna measurements is described. In contrast to the traditional planar near-field scanning, the presented technique acquires the near-field in form of rectangular rings and skips sampling points in smoothly varying near-field regions. Abrupt changes in the near-field are detected by comparing extrapolated and measured near-field values at coarser sampling points. A decision function based on the signal-to-noise ratio (SNR) of the measured value is used to determine the threshold difference between the measured and the extrapolated near-field values for skipping the sampling point. Near-field data thus collected on the resultant irregular grid is processed using the multilevel plane wave based near-field far-field transformation algorithm. The multilevel transformation algorithm is computationally efficient and capable of handling data collected on irregular grids. A rigorous analysis of the adaptive data acquisition approach is then performed in terms of transformed far-field accuracy, decision factor, and test time reduction. Several test cases covering a variety of antennas are shown using synthetic as well as measured data for realistic results. Afterwards the acquisition time for the worst case scenario is compared with the traditional planar near-field measurement technique.
2012-04-02
PIER
Vol. 126, 463-479
Efficient Multiscale Finite Difference Frequency Domain Analysis Using Multiple Macromodels with Compressed Boundaries
Jakub Podwalski , Piotr Kowalczyk and Michal Mrozowski
In this paper, a novel idea of reducing numerical complexity of finite difference method using multiple macromodels is presented. The efficiency of the macromodeling technique depends on the number of ports of a model. To enhance the efficiency of the algorithm the field samples at the boundary of the macromodel are replaced with amplitudes of discretized Legendre polynomials. Redefining the problem in such manner results in significant reduction of the analysis time. The validity and efficiency of the proposed procedure are demonstrated by performing the analysis of two microwave filters requiring a high density mesh.
2012-03-30
PIER B
Vol. 39, 355-371
An Interpolation Method to Calibrate Electromagnetic Probes in Semi-Anechoic Chambers
Ciro Tremola , Marco A. Azpurua , Eduardo Paez , Daniel Ormeno and Alejandro Rebolledo
Based upon the standard IEEE 1309, a new calibration method for electromagnetic (EM) probes is proposed. The aforementioned method compares the electric field strength measured with the EM probe subject to calibration with the E-field intensity calculated through a linear interpolation of the corrected measurement using a reference EM probe. The corrected measurement results are computed by means of the calibration factors stated in the calibration certificate of the reference EM probe. The conditions and criteria under which it is possible to calibrate EM probes inside semi-anechoic chambers in the frequency range of 80 MHz to 1 GHz, are presented. The results shows that the calibration method proposed in this paper is characterized by deviations of less than 1 dB in almost all the frequencies considered, verifying the reliability of the method. The proposed approach is very useful for registering the measurement drift of EM probes used in EMC testing laboratories.
2012-03-26
PIER B
Vol. 39, 337-354
Jute and Tea Discrimination through Fusion of SAR and Optical Data
Dipanwita Haldar , Chakrapani Patnaik , Shiv Mohan and Manab Chakraborty
Remote sensing approaches based on both optical and microwave region of EM spectra have been widely adapted for large scale crop monitoring and condition assessment. Visible, infrared and microwave wavelengths are sensitive to different crop characteristics, thus data from optical and radar sensors are complementary. Synthetic Aperture Radar (SAR) responds to the large scale crop structure (size, shape and orientation of leaves, stalks, and fruits) and the dielectric properties of the crop canopy. Research is needed to assess the saturation effects of SAR data and to investigate the synergy between the optical and SAR imagery for exploring various dimensions of crop growth which is not possible with any one of them singly with higher degree of accuracy. An attempt has been made to study the potential of SAR and optical data individually and by fusing them to separate various landcover classes. Two-date and three-date SAR data could distinguish jute and tea crop with 70-85% accuracy, while cloud free optical data (green, red and infrared bands) resulted in accuracy 80-85%. On fusing the optical and SAR single date data of May, 29 2010 using Brovey method, an accuracy of 85{\%} was obtained. PCA and HSV with munsell based approaches resulted in similar accuracies but HSV performed the best among these. This emphasizes on the synergistic effect of SAR and optical data. Also the fused data could be used to delineate the crop condition and age by inputs like NDVI from optical and XPR (Cross polarization ratio) from SAR data. The co- and cross polarization ratios along with various indices viz. Biomass Index (BMI), Volume Scattering Index (VSI) and canopy structural index (CSI) were used to discriminate tea from jute. Due to differences in structural component of tea and jute at early season as manifested by the indices, there is clear separability as observed from the mean values. Among the dual polarization combinations, HV/VV performed the best (70%) followed by HV/HH (62%) and lastly HH/VV (42%). Among the single best indices for discrimination BMI performed the best. Combination of Co, Cross-polarization and BMI yields around 80% classification accuracy. BMI and VSI combination yielded the best classification accuracy of 84%. This level of accuracy obtained was much superior to that of multidate HH polarization SAR data.
2012-03-26
PIER B
Vol. 39, 319-335
Amplitude and Directional of Arrival Estimation: Comparison Between Different Techniques
Fawad Zaman , Ijaz Mansoor Qureshi , Aqdas Naveed , Junaid Ali Khan and Raja Muhammad Asif Zahoor
In this work, we propose a method based on Genetic algorithm hybridized with Pattern Search for joint estimation of Amplitude and Direction of Arrival, azimuth as well as elevation angles using L-type array. Four other schemes i.e., the Genetic algorithm, Pattern Search, Simulated Annealing and Simulated Annealing hybridized with Pattern Search are also discussed and compared with Genetic algorithm hybridized with Pattern Search. Multiple sources are taken in the far field of sensors array and Mean Square Error is taken as a fitness function. This fitness function is optimal in nature and requires only a single snapshot. It avoids any ambiguity or required permutation as in some other methods to link it with angles found in the previous snapshot. The reliability and effectiveness of the proposed scheme is tested on the basis of Monte- Carlo simulations and its statistical analysis.
2012-03-26
PIER Letters
Vol. 30, 163-171
Comparison of THz Backward Wave Oscillators Based on Corrugated Waveguides
Mauro Mineo and Claudio Paoloni
The backward wave oscillator is a promising and powerful source at THz frequencies. The rectangular corrugated waveguide is an effective solution as slow wave structure to design backward-wave oscillators (BWOs), suitable to be fabricated by photolithographic high-aspect ratio processes. However, assembling and vacuum pumping are a critical issue. In this paper, a corrugated waveguide with the width of the corrugation narrower than the waveguide width will be investigated as slow wave structure for BWOs. A relevant improvement from the point of view of the assembling, together with even better performance will be demonstrated. Two backward wave oscillators, at 1 THz central frequency, designed with conventional and narrow corrugated waveguide will be compared in terms of output power and frequency band of tuning.
2012-03-26
PIER
Vol. 126, 449-461
42.13 Gbit/S 16qam-OFDM Photonics-Wireless Transmission in 75-110 GHz Band
Lei Deng , Deming Liu , Xiaodan Pang , Xu Zhang , Valeria Arlunno , Ying Zhao , Antonio Caballero , Anton K. Dogadaev , Xianbin Yu , Idelfonso Tafur Monroy , Marta Beltran and Roberto Llorente
We present a simple architecture for realizing high capacity W-band (75-110 GHz) photonics-wireless system. 42.13 Gbit/s 16QAM-OFDM optical baseband signal is obtained in a seamless 15 GHz spectral bandwidth by using an optical frequency comb generator, resulting in a spectral efficiency of 2.808 bits/s/Hz. Transparent photonic heterodyne up-conversion based on two free-running lasers is employed to synthesize the W-band wireless signal. In the experiment, we program an improved DSP receiver and successfully demonstrate photonics-wireless transmission of 8.9 Gbit/s, 26.7 Gbit/s and 42.13 Gbit/s 16QAM-OOFDM W-band signals, with achieved bit-error-rate (BER) performance below the forward error correction (FEC) limit.
2012-03-26
PIER
Vol. 126, 429-447
Analysis of Characteristics of Two Close Stationary Human Targets Detected by Impulse Radio UWB Radar
Yanfeng Li , Xijing Jing , Hao Lv and Jianqi Wang
The detection and identification of multi-stationary human targets with IR-UWB radar is a new and important technology. This paper is focused on the detection and identification of two close stationary human targets by using monostatic IR-UWB radar with low center frequency. For this purpose, the characteristics of the radar echoes from two close stationary human targets are processed and analyzed. Furthermore, the effect that the interference behind the anterior target affects the signal of posterior target is represented, and the features of this interference are interpreted. According to the analyses, a method using adaptive cancellation is proposed to attenuate the interference and improve the detection and identification of two close stationary human targets. Series of experiments are done in different scenarios, and the results of the experiments are presented to demonstrate the validity of the method. It has been shown that the proposed method can attenuate the interference and make the detection and identification of multi-human targets more precise.
2012-03-26
PIER
Vol. 126, 399-427
Koch-Like Sided Sierpinski Gasket Multifractal Dipole Antenna
Daotie Li and Jun-Fa Mao
Koch-like fractal curve and Sierpinski Gasket are syncretized in minor-main way, forming so called Koch-like sided Sierpinski Gasket multifractal dipole (KSSG). Some iterative combinatorial cases of the two monofractals KiSj KSSG have been investigated in free space without feedline for revealing the assumed multifractal property. Then a pragmatical coplanar stripline (CPS) fed K4S1 KSSG multifractal bow-tie dipole with dimension of 61.1mm×34.75mm was designed, fabricated and measured. Six matched bands(S11<-10dB) with moderate gain (2dBi-6dBi) and high efficiency (80%-95%) are obtained within band 1.5GHz-14GHz, of which f1=2.137GHz (1.978-2.287GHz, 309MHz, 14.46%, PCS1900+IMT2000+UMTS), f2=4.103GHz (3.916-4.2GHz, 374MHz, 9.12%, WiMAX), f3=5.596GHz (5.499-5.679GHz, 180MHz, 3.22%, WLAN+WiMAX) are commonly used. Gain patterns of these bands are all almost omnidirectional in H-plane (Phi=0o, XOZ) and doughnut-shaped in E-plane (Phi=90o, YOZ), which suggests that K4S1 KSSG operates as a half-wavelength dipole. It behaviors like the main fractal in low frequency and resembles the minor one in high frequency. The consistent results of simulation and measurement have evinced the multifractal antennas' peculiar properties and superiority over its monofractals in impedance uniformity, gain pattern, efficiency and dimension. So it is attractive to PCS, UMTS, WLAN, WiFi, WiMAX and other communication systems.
2012-03-26
PIER
Vol. 126, 375-398
Hybrid TDIE-TDPO Method Using Weighted Laguerre Polynomials for Solving Transient Electromagnetic Problems
Ming-Da Zhu , Xi-Lang Zhou , Wei Luo and Wen-Yan Yin
An efficient and stable hybrid method, based on the time-domain integral equation (TDIE) and time-domain physical optics (TDPO), is developed for investigating transient radiation and scattering from perfectly electrical conducting (PEC) objects. It at first requires partitioning the PEC object surface into TDIE and TDPO regions, respectively. Then, a set of hybrid TDIE-TDPO equations is derived and solved using an adaptive marching-on-in-order (MOO) method. The fast Fourier transforms (FFT)-based blocking scheme is further implemented into the proposed algorithm so as to reduce N2O dependence of the traditional MOO method to NOlog2(NO), where NO is the highest order of the weighted Laguerre polynomials used for computation. Under such circumstances, its computational cost, in comparison with the full TDIE-MOO solver, is reduced significantly. Several numerical examples are presented to demonstrate its accuracy and efficiency in solving some typical transient electromagnetic problems.