1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics ," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered lattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, "A dielectric omnidirectional reflector,", Vol. 282, 1679-1682, 1998. Google Scholar
4. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Optics Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573 Google Scholar
5. Bloemera, M. J. and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, 1676-1678, 1998.
doi:10.1063/1.121150 Google Scholar
6. Choi, Y.-K., Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, "Antireflection film in one-dimensional metallo-dielectric photonic crystals ," Optics Commun., Vol. 230, 239-243, 2004.
doi:10.1016/j.optcom.2003.11.028 Google Scholar
7. Perze-Rodriguez, F., F. Diaz-Monge, N. M. Makarov, R. Marquez-Islas, and B. Flores-Desirena, "Spatial-dispersion effects in one-dimensional photonic crystals with metallic inclusion," MSWW 07 Symposium Proceedings, 92-97, 2007. Google Scholar
8. Soto-Puebla, D., M. Xiao, and F. Ramos-Mendieta, "Optical properties of a dielectric-metallic superlattice: The complex photonic bands," Phys. Lett. A, Vol. 326, 273-280, 2004.
doi:10.1016/j.physleta.2004.03.070 Google Scholar
9. Bermann, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals," Phys. Rev. B, Vol. 74, 092505, 2006.
doi:10.1103/PhysRevB.74.092505 Google Scholar
10. Takeda, H. and K. Yoshino, "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B, Vol. 67, 245109, 2005.
doi:10.1103/PhysRevB.67.245109 Google Scholar
11. Wu, C.-J., M.-S. Chen, and T.-J. Yang, "Photonic band structure for a superconducting-dielectric superlattice," Physica C, Vol. 432, 133-139, 2005.
doi:10.1016/j.physc.2005.07.019 Google Scholar
12. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal ," Optics Express, Vol. 18, 27155-27166, 2010.
doi:10.1364/OE.18.027155 Google Scholar
13. Van Duzer, T. and C. W. Turner, Principles of Superconductive Devices and Circuits, Edward Arnold, London, 1981.
14. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89-90, 2004.
doi:10.1585/jspf.80.89 Google Scholar
15. Hojo, H. and A. Mase, "Electromagnetic-wave transmittance characteristics in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., SERIES, Vol. 8, 477-479, 2009. Google Scholar
16. Li, W., Y. Zhao, R. Cui, and H. Zhang, "Plasma photonic crystal," Font. Optoelectron. China, Vol. 2, 103-107, 2009, and references therein.
doi:10.1007/s12200-009-0004-1 Google Scholar
17. Prasad, S., V. Singh, and A. K. Singh, "Dispersion characteristics and optimization of reflectivity of binary one-dimensional plasma photonic crystal having linearly graded material ," Progress In Electromagnetics Research M, Vol. 22, 149-162, 2012.
doi:10.2528/PIERM11101004 Google Scholar
18. Manzanares-Martinez, J., "Analytic expression for the effective plasma frequency in one-dimensional metallic-dielectric photonic crystal," Progress In Electromagnetics Research M, Vol. 13, 189-202, 2010.
doi:10.2528/PIERM10061905 Google Scholar
19. Fan, W. and L. Dong, "Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge," Phys. Plasmas, Vol. 17, 073506, 2010.
doi:10.1063/1.3456520 Google Scholar
20. Faith, J., S. P. Kuo, and J. Huang, "Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma," Phys. Rev. E, Vol. 55, 1843-1851, 1997.
doi:10.1103/PhysRevE.55.1843 Google Scholar
21. Kuo, S. P. and J. Faith, "Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma," Phys. Rev. E, Vol. 56, 2143-2150, 1997.
doi:10.1103/PhysRevE.56.2143 Google Scholar
22. Sakai, O., T. Sakaguchi, and K. Tachibana, "Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas," Appl. Phys. Lett., Vol. 87, 241505, 2005.
doi:10.1063/1.2147709 Google Scholar
23. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structure of electromagnetic waves," J. Appl. Phys., Vol. 101, 073304, 2007.
doi:10.1063/1.2713939 Google Scholar
24. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal," Progress In Electromagnetics Research, Vol. 125, 219-235, 2012.
doi:10.2528/PIER12010311 Google Scholar
25. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566 Google Scholar
26. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105 Google Scholar
27. Banerjee, A., "Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1023-1032, 2010.
doi:10.1163/156939310791586151 Google Scholar
28. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal ," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004 Google Scholar
29. Dai, X. Y., Y. J. Xiang, and S. C.Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011. Google Scholar
30. Prasad, S., V. Singh, and S. K. Singh, "Modal propagation characteristics of EM waves in ternary one-dimensional plasma photonic crystals," Optik, Vol. 121, 1520-1528, 2010.
doi:10.1016/j.ijleo.2009.02.024 Google Scholar
31. Naumov, A. N. and A. M. Zheltikov, "Ternary one-dimensional photonic band gap structures: Dispersion relation, extended phase-matching abilities and attosecond outlook," Laser Phys., Vol. 11, 879-884, 2001. Google Scholar
32. Morozov, G. V. and D. W. L. Sprung, "Floquet-Bloch waves in one-dimensional photonic crystals," Europhysics Lett., Vol. 96, 54005, 2011.
doi:10.1209/0295-5075/96/54005 Google Scholar
33. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.
34. Morozov, G. V., F. Placido, and D. W. L. Sprung, "Absorptive photonic crystals in 1D," J. Optics, Vol. 13, 035102, 2011.
doi:10.1088/2040-8978/13/3/035102 Google Scholar
35. Bergmair, M., M. Huber, and K. Hingerl, "Band structure, wiener bounds and coupled surface plasmons in one dimensional photonic crystals," Appl. Phys. Lett., Vol. 89, 081907-081909, 2006.
doi:10.1063/1.2338546 Google Scholar
36. Naito, T., O. Saikai, and K. Tachibana, "Experimental verification of complex dispersion relation in lossy photonic crystals," Appl. Phys. Express, Vol. 1, 066003, 2008.
doi:10.1143/APEX.1.066003 Google Scholar