1. Taflove, A. and K. R. Umashankar, "The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures," Progress In Electromagnetics Research, Vol. 02, 287-373, 1990. Google Scholar
2. Xu, F., Y. Zhang, W. Hong, K. Wu, and T. J. Cui, "Finite-difference frequency-domain algorithm for modeling guided-wave properties ofsubstrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 11, 2221-2227, Nov. 2003. Google Scholar
3. http://www.cst.com/.
4. http://www.qwed.com.pl/.
5. Zheng, G., B. Z. Wang, H. Li, X. F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetics Research, Vol. 99, 453-463, 2009.
doi:10.2528/PIER09111502 Google Scholar
6. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804 Google Scholar
7. Chang, H. W., W. C. Cheng, and S. M. Lu, "Layer-mode transparent boundary condition for the hybrid fd-fd method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606 Google Scholar
8. Chang, H. W., Y. H. Wu, and W. C. Cheng, "Hybrid fdfd analysis of crossing waveguides by exploiting both the plus and the cross structural symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
doi:10.2528/PIER10030202 Google Scholar
9. Kulas, L. and M. Mrozowski, "Multilevel model order reduction," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 165-167, Apr. 2004.
doi:10.1109/LMWC.2004.827113 Google Scholar
10. Kulas, L. and M. Mrozowski, "Reduced-order models in FDTD," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 10, 422-424, Oct. 2001.
doi:10.1109/7260.959317 Google Scholar
11. Kulas, L. and M. Mrozowski, "Reduced order models of refined Yee's cells," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 4, 164-166, Apr. 2003.
doi:10.1109/LMWC.2003.811068 Google Scholar
12. Kulas, L. and M. Mrozowski, "A fast high-resolution 3-D finite-difference time-domain scheme with macromodels," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2330-2335, Sept. 2004.
doi:10.1109/TMTT.2004.834585 Google Scholar
13. Kulas, L. and M. Mrozowski, "Low-reflection subgridding," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1587-1592, May 2005.
doi:10.1109/TMTT.2005.847048 Google Scholar
14. Kulas, L. and M. Mrozowski, "Macromodels in the frequency domain analysis of microwave resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, 94-96, 2004.
doi:10.1109/LMWC.2004.825165 Google Scholar
15. Podwalski, J., P. Sypek, L. Kulas, and M. Mrozowski, "FDTD analysis of EBG structures with macromodel cloning," IEEE MTT-S International Microwave Symposium Digest, 296-299, Jun. 11-16, 2006. Google Scholar
16. Cangellaris, A. C., M. Celik, S. Pasha, and Z. Li, "Electromagnetic model order reduction for system-level modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 840-850, 1999.
doi:10.1109/22.769317 Google Scholar
17. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, John Wiley & Sons, Inc., 2006.
18. Remis, R. F., "An efficient model-order reduction approach to low-frequency transmission line modeling," Progress In Electromagnetics Research, Vol. 101, 139-155, 2010.
doi:10.2528/PIER09123006 Google Scholar
19. Kowalczyk, P., L. Kulas, and M. Mrozowski, "Analysis of microstructured optical fibers using compact macromodels," Opt. Express, Vol. 19, 19354-19364, 2011.
doi:10.1364/OE.19.019354 Google Scholar
20. Song, Z., D. Su, F. Duval, and A. Louis, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011. Google Scholar
21. Moore, B., "Principal component analysis in linear systems: Controllability, observability, and model reduction," IEEE Trans. Automat. Contr., Vol. 26, 17-32, 1981.
doi:10.1109/TAC.1981.1102568 Google Scholar
22. Feldmann, P. and R. W. Freund, "Efficient linear circuit analysis by pade approximation via the lanczos process," IEEE Transactions on Computer-Aided Design, Vol. 14, 639-649, 1995.
doi:10.1109/43.384428 Google Scholar
23. Odabasioglu, A., M. Celik, and L. T. Pileggi, "PRIMA: Passive reduced-order interconnect macromodeling algorithm," 1997 IEEE/ACM International Conference on Computer-Aided Design, 1997. Digest of Technical Papers , 58-65, Nov. 9-13, 1997. Google Scholar
24. Sheehan, B. N., "ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization," Proc. IEEE 36th Design Automat. Conf., 17-21, 1999.
25. Chen, Y. and J. White, "A quadratic method for nonlinear model order reduction," Proc. Int. Conf. Modeling and Simulation of Microsystems, 477480 2000.
26. Rewienski, M. and J. White, "A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 2, 155-170, Feb. 2003.
doi:10.1109/TCAD.2002.806601 Google Scholar
27. Chaturantabut, S. and D. C. Sorensen, "Discrete empirical interpolation for nonlinear model reduction," Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, 4316-4321, Dec. 15-18, 2009. Google Scholar
28. Dohlus, J. M., P. Hahne, X. Du, B. Wagner, T. Weiland, and S. G. Wipf, "Using the Maxwell grid equations to solve large problems," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1914-1917, Mar. 1993.
doi:10.1109/20.250782 Google Scholar
29. Lech, R. and J. Mazur, "Tunable waveguide filter with bow-tie metallic posts," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 151, No. 2, 156-160, Apr. 2004.
doi:10.1049/ip-map:20040166 Google Scholar
30. "ANSYS HFSS," 3D Full-wave Electromagnetic Field Simulation, http://www.ansoft.com/products/hf/hfss/overview.cfm. Google Scholar
31. Belenguer, A., H. Esteban, E. Diaz, C. Bachiller, J. Cascon, and V. E. Boria, "Hybrid technique plus fast frequency sweep for the efficient and accurate analysis of substrate integrated waveguide devices," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 3, 552-560, Mar. 2011.
doi:10.1109/TMTT.2010.2098884 Google Scholar
32. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRS)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201 Google Scholar
33. Zhang, Q. L., W. Y. Yin, S. He, and L. S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-342, 2011.
doi:10.2528/PIER10110307 Google Scholar