College of Optoelectronics Science and Engineering
Hua Zhong University of Science and Technology
China
HomepageCollege of Optoelectronics Science and Engineering
Hua Zhong University of Science and Technology
China
HomepageDTU Fotonik, Department of Photonics Engineering
Technical University of Denmark
Denmark
HomepageDTU Fotonik, Department of Photonics Engineering
Technical University of Denmark
Denmark
HomepageDTU Fotonik, Department of Photonics Engineering
Technical University of Denmark
Denmark
HomepageDTU Fotonik, Department of Photonics Engineering
Technical University of Denmark
Denmark
HomepageDTU Fotonik, Department of Photonics Engineering
Technical University of Denmark
Denmark
HomepageValencia Nanophotonics Technology Center
Universidad Politcnica de Valencia
Spain
Homepage1. Nagatsuma, T., T. Tkakda, H.-J. Song, K. Ajito, N. Kukutsu, and Y. Kado, "Millimeter- and THz-wave photonics towards 100-Gbit/s wireless transmission," Proc. of IEEE Photonics Society's 23th Annual Meeting, 385-386, Denver, Colorado, USA, 2010. Google Scholar
2. Ni, W., N. Nakajima, and S. Zhang, "A broadband compact folded monopole antenna for WLAN/WIMAX communication applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 921-930, 2010.
doi:10.1163/156939310791285146 Google Scholar
3. Soltani, S., M. N. Azarmanesh, E. Valikhanloo, and P. Lotfi, "Design of a simple single-feed dual-orthogonal-linearly-polarized slot antenna for concurrent 3.5 GHz WIMAX and 5 GHz WLAN access point," Jouranl of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1741-1750, 2010. Google Scholar
4. Ren, X.-S., Y.-Z. Yin, W. Hu, and Y.-Q. Wei, "Compact tri-band rectangular ring patch antenna with asymmetrical strips for WLAN/WIMAX applications," Jouranl of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1829-1838, 2010. Google Scholar
5. Yang, B., X.-F. Jin, X.-M. Zhang, H. Chi, and S. L. Zheng, "Photonic generation of 60 GHz millimeter-wave by frequency quadrupling based on a mode-locking SOA fiber ring laser with a low modulation depth MZM ," Jouranl of Electromagnetic Waves Jouranl of Electromagnetic Waves, Vol. 24, No. 13, 1773-1782, 2010. Google Scholar
6. Navarro-Cia, M., V. T. Landivar, M. Beruete, and M. S. Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105 Google Scholar
7. Wells, J., "Faster than fiber: The future of multi-Gb/s wireless," IEEE Microw. Mag., Vol. 10, No. 3, 104-112, 2009.
doi:10.1109/MMM.2009.932081 Google Scholar
8. Thakur, J. P., W.-G. Kim, and Y.-H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasioptics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.
doi:10.2528/PIER10022404 Google Scholar
9. Nee, V. R. and R. Prasad, OFDM Wireless Multimedia Communications, Vol. 103, Artech House, Boston, 2000.
10. Prasad, R., OFDM for Wireless Communications Systems, Artech House, Boston, 2004.
11. Weiss, M., A. Stohr, F. Lecoche, and B. Charbonnier, "27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM," Proc. of International Topical Meeting on Microwave Photonics , 1-3, Valencia, Spain, 2009. Google Scholar
12. Lin, C.-T., E.-Z. Wong, W.-J. Jiang, P.-T. Shin, J. Chen, and S. Chi, "28-Gb/s 16-QAM OFDM radio-over-fiber system within 7-GHz license-free band at 60 GHz employing all-optical up-conversion ," Proc. of Conference on Lasers and Electro-optics and Conference on Quantum Electronics and Laser Science CLEO/QELS, 1-2, Baltimore, MD, USA, 2009. Google Scholar
13. Kanno, A., K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K.-I. Kitayama, "20-Gb/s QPSK W-band (75-110 GHz) wireless link in free space using radio-over-fiber technique ," IEICE Electron. Express, Vol. 8, No. 8, 612-617, 2011.
doi:10.1587/elex.8.612 Google Scholar
14. Kanno, A., K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K.-I. Kitayama, "40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission," Opt. Express, Vol. 19, No. 26, B56-B63, 2011.
doi:10.1364/OE.19.000B56 Google Scholar
15. Zibar, D., R. Sambaraju, A. Caballero, J. Herrera, U. Westergren, A. Walber, J. B. Jensen, J. Marti, and I. T. Monroy, "High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM," IEEE Photon. Technol. Lett., Vol. 23, No. 12, 810-812, 2011.
doi:10.1109/LPT.2011.2139201 Google Scholar
16. You, Y.-H. and J. B. Kim, "Pilot and data symbol-aided frequency estimation for UWB-OFDM," Progress In Electromagnetics Research, Vol. 90, 205-217, 2009.
doi:10.2528/PIER09011601 Google Scholar
17. Lee, Y.-D., D.-H. Park and H.-K. Song, "Improved channel estimation and MAI-Robust schemes for wireless OFDMA system," Progress In Electromagnetics Research, Vol. 81, 213-223, 2008.
doi:10.2528/PIER08010403 Google Scholar
18. Liu, X. and F. Buchali, "Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM," Opt. Express, Vol. 16, No. 26, 21944-21957, 2008.
doi:10.1364/OE.16.021944 Google Scholar