1. Rheinboldt, W. C. and I. Babuska, "Error estimates for adaptive finite element computations," SIAM Journal of Numerical Analysis, Vol. 15, 736-754, Aug. 1978.
doi:10.1137/0715001 Google Scholar
2. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.
3. Salazar-Palma, M., T. K. Sarkar, L. E. García-Castillo, T. Roy, and A. R. Djordjevic, Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling, Artech House Publishers, Inc., Norwood, MA, 1998.
4. Ping, X. W. and T. J. Cui, "Factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scattering problems," Progress In Electromagnetics Progress In Electromagnetics, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703 Google Scholar
5. Tian, J., Z. Q. Lv, X. W. Shi, L. Xu, and F. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite finite element equations in electromagnetic problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207 Google Scholar
6. Klopf, E. M., S. B. Manic, M. M. Ilc, and B. M. Notaros, "Efficient time-domain analysis of waveguide discontinuities using higher order FEM in frequency domain ," Progress In Electromagnetics Research, Vol. 120, 215-234, 2011. Google Scholar
7. Trujillo-Romero, C. J., L. Leija, and A. Vera, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole, inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-125, 2011. Google Scholar
8. Andersen, L. S. and J. L. Volakis, "Hierarchical tangential vector finite elements for tetrahedra," IEEE Microwave and Guided Wave Letters, Vol. 8, 127-129, Mar. 1998.
doi:10.1109/75.661137 Google Scholar
9. Webb, J. P., "Hierarchical vector basis functions of arbitrary order for triangular and tetrahedral finite elements," IEEE Transactions on Antennas and Propagation, Vol. 47, 1244-1253, Aug. 1999.
doi:10.1109/8.791939 Google Scholar
10. Sun, D. K., J. F. Lee, and Z. Csendes, "Construction of nearly orthogonal Nedelec bases for rapid convergence with multilevel preconditioned solvers," SIAM Journal of Scientific Computing, Vol. 23, No. 4, 1053-1076, 2003.
doi:10.1137/S1064827500367531 Google Scholar
11. Zhu, Y. and A. C. Cangellaris, "Finite element basis functions spaces for tetrahedra elements," Applied Computational Electromagnetics Society (ACES) Meeting, Monterey, CA, USA, Mar. 2001. Google Scholar
12. Ilíc, M. M., A. Z. Ilíc, and B. M. Notaroš, "Efficient large-domain 2-D FEM solution of arbitrary waveguides using p-refinement on generalized quadrilaterals," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1377-1383, Apr. 2005.
doi:10.1109/TMTT.2005.845761 Google Scholar
13. Demkowicz, L., Computing with hp Finite Elements. I. One- and Two-Dimensional Elliptic and Maxwell Problems, Chapman & Hall/CRC Press, Taylor and Francis, 2007.
14. Demkowicz, L., L., J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and A. Zdunek, Computing with hp Finite Elements. II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Chapman & Hall/CRC Press, Taylor and Francis, 2008.
15. García-Castillo, L. E., D. Pardo, and L. F. Demkowicz, "Energy norm based and goal-oriented automatic hp adaptivity for electromagnetics. Application to the analysis of H-plane and E-plane rectangular waveguide discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 3039-3049, Dec. 2008, doi: 10.1109/TMTT.2008.2007096.
doi:10.1109/TMTT.2008.2007096 Google Scholar
16. Gómez-Revuelto, I., L. E. García-Castillo, D. Pardo, and L. F. Demkowicz, "A two-dimensional self-adaptive hp finite element method for the analysis of open region problems in electromagnetics," IEEE Transactions on Magnetics, Vol. 43, 1337-1340, Apr. 2007, doi: 10.1109/TMAG.2007.892413.
doi:10.1109/TMAG.2007.892413 Google Scholar
17. Shi, Y., X. Luan, J. Qin, C. Lv, and C. H. Liang, "Multilevel Green's function interpolation method solution of volume/surface integral equation for mixed conducting/bi-isotropic objects," Progress In Electromagnetics Research, Vol. 107-252, 2010. Google Scholar
18. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green's operators and Arnoldi basis functions ," Progress In Electromagnetics Research, Vol. 103, 305-322, 2010.
doi:10.2528/PIER10032915 Google Scholar
19. Bettess, P., "Infinite elements," International Journal for Numerical Methods in Engineering, Vol. 11, 54-64, 1977. Google Scholar
20. Silvester, P. P. and M. S. Hsieh, "Finite-element solution of 2-dimensional exterior-field problems," IEE Proceedings-H (Microw. Antennas Propag.), Vol. 118, 1743-1747, Dec. 1971. Google Scholar
21. Mur, G., "Absorbing boundary conditions for the finite-di®erence approximation of the time-domain electromagnetic-field equations," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, 377-382, Nov. 1981.
doi:10.1109/TEMC.1981.303970 Google Scholar
22. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Mathematics of Computation, Vol. 31, 629-651, Jul. 1977. Google Scholar
23. Bayliss, A. and E. Turkel, "Radiation boundary conditions for wave-like equations," Communications on Pure and Applied Mathematics, Vol. 33, 707-725, 1980.
doi:10.1002/cpa.3160330603 Google Scholar
24. D'Angelo, J. and I. D. Mayergoyz, "Finite element methods for the solution of RF radiation and scattering problems," Electromagnetics, Vol. 10, 177-199, 1990.
doi:10.1080/02726349008908235 Google Scholar
25. Mittra, R. and O. Ramahi, "Absorbing boundary conditions for the direct solution of partial differential equations arising in electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 2, 133-173, 1990. Google Scholar
26. Gordon, R., R. Mittra, A. Glisson, and E. Michielssen, "Finite element analysis of electromagnetic scattering by complex bodies using an efficient numerical boundary condition for mesh truncation ," Electronic Letters, Vol. 29, 1102-1103, 1993.
doi:10.1049/el:19930735 Google Scholar
27. Mei, K. K., R. Pous, Z. Chen, and Y. W. Liu, "The measured equation of invariance: A new concept in field computations," IEEE Antennas and Propagation Society International Symposium Digest, Vol. 4, 2047-2048, Institute of Electrical and Electronics Engineer (IEEE), Chicago, Illinois, USA, Jul. 1992. Google Scholar
28. Alfonzetti, S., G. Borzi, and N. Salerno, "Iteratively-improved Robin boundary conditions for the finite element solution of scattering problems in unbounded domains," International Journal for Numerical Methods in Engineering, Vol. 42, 601-629, 1998.
doi:10.1002/(SICI)1097-0207(19980630)42:4<601::AID-NME373>3.0.CO;2-O Google Scholar
29. Liu, J. and J. M. Jin, "A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering ," IEEE Transactions on Antennas and Propagation, Vol. 49, 1794-1806, Dec. 2001. Google Scholar
30. Gómez-Revuelto, I., L. E. García-Castillo, M. Salazar-Palma, and T. K. Sarkar, "Fully coupled hybrid method FEM/high-frequency technique for the analysis of radiation and scattering problems," Microwave and Optical Technology Letters, Vol. 47, 104-107, Oct. 2005. Google Scholar
31. Fernández-Recio, R., L. E. García-Castillo, I. Gómez-Revuelto, and M. Salazar-Palma, "Fully coupled hybrid FEM-UTD method using NURBS for the analysis of radiation problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 774-783, Mar. 2008.
doi:10.1109/TAP.2008.916878 Google Scholar
32. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, Oct. 1994. Google Scholar
33. Chew, W. C. and W. H. Weedon, "A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave and Optical Technology Letters, 599-604, 1994.
doi:10.1002/mop.4650071304 Google Scholar
34. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition ," IEEE Transactions on Antennas and Propagation, Vol. 43, 1460-1463, Dec. 1995.
doi:10.1109/8.477075 Google Scholar
35. Stupfel, B., "A study of the condition number of various finite element matrices involved in the numerical solution of Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 52, 3048-3059, Nov. 2004. Google Scholar
36. Michler, C., L. Demkowicz, J. Kurtz, and D. Pardo, "Improving the performance of perfectly matched layers by means of hp-adaptivity ," Numerical Methods for Partial Differential Equations, Vol. 23, 832-858, Jul. 2007.
doi:10.1002/num.20252 Google Scholar
37. Pardo, D., L. Demkowicz, C. Torres-Verdin, and C. Michler, "PML enhanced with a self-adaptive goal-oriented hp-finite element method: Simulation of through-casing borehole resistivity measurements ," SIAM Journal of Scientific Computing, Vol. 30, No. 6, 2948-2964, 2008.
doi:10.1137/070689796 Google Scholar
38. García-Castillo, L. E., I. Gómez-Revuelto, F. Sáez de Adana, and M. Salazar-Palma, "A finite element method for the analysis of radiation and scattering of electromagnetic waves on complex environments," Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 2-5, 637-655, Feb. 2005.
doi:10.1016/j.cma.2004.05.025 Google Scholar
39. Chew, W. C., J. M. Jin, and E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microwave and Optical Technology Letters, Vol. 15, 363-369, Sept. 1997.
doi:10.1002/(SICI)1098-2760(19970820)15:6<363::AID-MOP8>3.0.CO;2-C Google Scholar
40. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects," Progress In Electromagnetics Research, Vol. 119, 85-105, 2011.
doi:10.2528/PIER11051715 Google Scholar
41. Bahadori, H., H. Alaeian, and R. Faraji-Dana, "Computation of periodic Green's functions in layered media using complex images technique," Progress In Electromagnetics Research, Vol. 112, 225-240, 2011. Google Scholar
42. Gómez-Revuelto, I., L. E. García-Castillo, and M. Salazar-Palma, "Goal-oriented self-adaptive hp-strategies for scattering and radiation problems," Progress In Electromagnetics Research, Vol. 125, 459-482, 2012.
doi:10.2528/PIER11121606 Google Scholar
43. Babuška, I. and B. Guo, "Approximation properties of the hp-version of the finite element method," Computer Methods in Applied Mechanics and Engineering, Vol. 133, 319-346, 1996. Google Scholar
44. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, 7-12, Jun. 1993.
doi:10.1109/74.250128 Google Scholar
45. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multi-level fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
doi:10.2528/PIER10061604 Google Scholar
46. Pan, X.-M., W.-C. Pi, and X.-Q. Sheng, "On OpenMP parallelization of the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 112, 199-213, 2011. Google Scholar
47. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410 Google Scholar