Search Results(13668)

2009-09-20
PIER M
Vol. 9, 35-40
The Propagation and Cutoff Frequencies of the Rectangular Metallic Waveguide Partially Filled with Metamaterial Multilayer Slabs
Dan Zhang and Jian-Guo Ma
In this paper, the wave propagation and the cutoff frequencies of a rectangular metallic waveguide, partially filled the metamaterial multilayer slabs have been studied. The equations of the TMM method are not complex and the numerical examples show that we can easily obtain the characteristics of the metamaterial multilayer's rectangular waveguide satisfyingly. The cutoff frequencies of the metamaterial waveguide show very different characteristics compared with the usual waveguide.
2009-09-20
PIER Letters
Vol. 11, 139-148
Bazro3:Yb Nanophosphor for Efficient Up-Conversion Light Emission
Luis-Armando Diaz-Torres , Elder De-la-Rosa , Jorge Oliva , Pedro Salas and Victor M. Castano
Strong visible green upconversion emission in nanocrystalline BaZrO3:Yb3+ powder, obtained by a hydrothermal process at 100ºC, is reported. The unconverted emission has a quadratic dependence on the pump intensity with a lifetime around half that of the NIR lifetime. Results suggest cooperative upconversion as the mechanism responsible for the green fluorescence. This efficient Yb3+-based cooperative up-conversion process allows the development of novel emitting materials in the UV-VIS range.
2009-09-20
PIER Letters
Vol. 11, 129-137
Enhanced Temperature Sensing by Using One-Dimensional Ternary Photonic Band Gap Structures
Anirudh Banerjee
This paper demonstrates a novel way to enhance the temperature sensitivity in one-dimensional (1D) photonic band gap (PBG) material by using a ternary periodic structure (i.e. three material layers constituting a period of lattice). The temperature sensitive wavelength band shift of (Si/SiO2) periodic structure was significantly enhanced when the structure was modified by sandwiching a thin layer of Bi4Ge3O12 between every two layers, constituting a period of lattice. When the thickness of sandwiched layer was increased further enhancement in temperature sensitivity was observed. These 1D ternary PBG structures can be substituted in place of 1D binary PBG for enhancing the temperature sensing performance.
2009-09-20
PIER Letters
Vol. 11, 119-128
Multi-Harmonic DC-Bias Network Based on Arbitrarily Width Modulated Microstrip Line
Samuel Ver-Hoeye , Carlos Vazquez-Antuna , Marta Gonzalez Corredoiras , Miguel Fernandez-Garcia , Luis Herran Ontanon and Fernando Las Heras Andres
In this work, we present a novel DC-bias network for multiharmonic microwave circuits based on an arbitrarily width-modulated microstrip line. The arbitrary shape of the width-modulated microstrip line is obtained by using multiple microstrip taper sections. The method is illustrated through the design of four different DC-bias networks blocking from 1 to 4 harmonic components of a 2.5 GHz signal. The designs with an optimum shape for the arbitrarily widthmodulated microstrip line have been manufactured and measured, obtaining a good agreement between the simulated and measured behavior.
2009-09-19
PIER M
Vol. 9, 21-34
Enlarged Photonic Band Gaps in One-Dimensional Magnetic Star Wave Guide Structure
Sanjeev Srivastava and Sant Ojha
Photonic band structure and reflection properties of one-dimensional magnetic star wave-guide (MSWG) structure composed of a backbone (or substrate) waveguide along which a finite side branches grafted periodically have been investigated. The dispersion relation and hence the photonic band gaps (PBGs) of the magnetic SWG structure have been obtained by applying the Interface Response Theory (IRT). Investigation of dispersion characteristics shows that the existence of band gaps in magnetic SWG structures does not require the contrast in the wave impedance of the constituent materials, which is unlike the usual magnetic photonic crystal structure, where there must be the contrast in the wave impedance for the existence of the band gaps. Moreover, magnetic SWG structures have wider reflection bands in comparison to normal magnetic photonic crystal (MPC) structure for the same contrast in the wave impedance. Analysis shows that the width of forbidden bands for MSWG structure changes with the change in permittivity and permeability of the backbone, and side branches materials even the ratio of wave impedance is the same, but it remains the same in case of MPC structure. In addition to this, we have studied the effects of variation of number of grafted branches and substrates i.e., number of nodes on the reflection bands of magnetic SWG structure.
2009-09-19
PIER M
Vol. 9, 9-20
Wide-Angle Reflection Wave Polarizers Using Inhomogeneous Planar Layers
Mohammad Khalaj-Amirhosseini and Sayed Razavi
In this paper, inhomogeneous planar layers are optimally designed as reflection wave polarizers in a desired incidence angles range. First, the electric permittivity function of the structure is expanded in a truncated Fourier series. Then, the optimum values of the coefficients of the series are obtained through an optimization approach. The validation and the performance of the proposed structure are verified using some examples.
2009-09-19
PIER M
Vol. 9, 1-8
Effective Skin Depth for Multilayer Coated Conductor
Hong-Wei Deng , Yong-Jiu Zhao , Chang-Ju Liang , Wan-Shun Jiang and Yueming Ning
In this paper, the effective skin depth which provides a useful evaluation for field penetration in multilayer coated conductor is proposed. The reflection on the interface between the adjacent conductors is considered in theoretical derivation. It is found that the effective skin depths of the gold and gold-nickel coated copper rapidly vary with the thickness of the outer layer (gold) when the gold thickness is less than twice gold skin depths and achieve stabilization as the gold thickness increases to five times gold skin depths.
2009-09-18
PIER
Vol. 96, 251-266
Fast Capacitance Extraction for Finite Planar Periodic Structures Using the Generalized Forward-Backward and Novel Spectral Acceleration Method
Chatrpol Lertsirimit and Danai Torrungrueng
The generalized forward-backward and novel spectral acceleration (GFB/NSA) method is applied to capacitance extraction problems of finite planar periodic structures. In the GFB method, the interaction within a unit cell can be calculated and stored beforehand. The interactions between relatively far-separated unit cells are however calculated by the GFB/NSA method to further accelerate the calculation speed. The contributions to a receiving element on finite planar periodic structures are separated into weak and strong source contributions by an appropriate separation index, which is conveniently specified by an amount of unit cells rather than a distance. The strong source contribution is performed by the standard matrix-vector multiplication in the GFB method, while the weak source contribution is computed using the NSA algorithm. Numerical examples show comparisons of the GFB/NSA method with a commercial software, including the efficiency of the method. With the array increment in one direction, the GFB/NSA method shows O(N) in the calculation time per iteration, while its memory requirement for a very large problem also tends to be O(N), where N is the number of unknowns.
2009-09-18
PIER M
Vol. 8, 249-261
Polarized Photon Generation for the Transport of Quantum States: A Closed-System Simulation Approach
Md. Mijanur Rahman and Pankaj Kumar Choudhury
A novel approach for logic state dependent generation of polarized photon is proposed, where the logic states '0' and '1' are represented by two sub-spaces in the Hilbert space of the hyperfine states of rubidium atom (87Rb). Each subspace consists of a ground state, an intermediate state and an excited state. The atom is placed at the center of a two-mode cavity, and the cavity modes correspond to frequencies of the generated photon. Photon generation process involves raising the atom to the excited state within the corresponding subspace and letting it decay back to the initial (ground) state, emitting thereby a photon of logic state dependent polarization. In order to keep the driving laser frequencies far off from the cavity mode frequencies, the atom is raised to the excited state in two steps --- first from the ground state to the intermediate state and then from the intermediate state to the excited state. Polarization states of the photon represent the logic states, and can be used to transport logic from one node to another of the quantum network.
2009-09-18
PIER Letters
Vol. 11, 113-118
Compact Circularly Polarized Microstrip Antenna with Wide Beamwidth for Compass Satellite Service
Jing-Ya Deng , Ying-Zeng Yin , You-Huo Huang , Jie Ma and Qi-Zhong Liu
A compact circularly polarized (CP) microstrip antenna with inserted nine cross slots is proposed to reduce the size and widen the beamwidth. The antenna is operated at 1.268 GHz, and built by using a substrate with a coaxial probe feed. The impedance bandwidth (VSWR < 2) is 1.5% and the 3 dB axial ratio bandwidth is 0.52%. The measure gain is 4.5 dBi and beamwidth is about 110o. The measured results for the compact CP antenna with embedded cross slots size shows that the resonate frequency is significantly lowered from 1.951 GHz to 1.268 GHz, corresponding to a 35% antenna size reduction compared with the one without any slot.
2009-09-18
PIER C
Vol. 10, 175-185
A Wideband Miniaturized Dipole Antenna on a Printed Circuit Board
Hung Yu Yang and Yanyan Zhang
This paper investigates a miniaturized resonant antenna that comprises a meandered monopole and a partial ground plane. A bandwidth enhancement is found using the ground plane on the back side of the circuit board where the entire communication system resides. The meandered monopole together with the ground plane forms a wideband dipole antenna. The design shows over 25% 10 dB impedance bandwidth at 2.5 GHz ISM band with a monopole area of 300 mils by 166 mils on a small circuit board and a backside ground plane 1500 mils by 600 mils. The wire length is about one third and the Q factor is about twice as compared against the case of using a straight quarter-wave microstrip monopole. The antenna Q factor as a function ground plane area is characterized. The use of circuit ground as a part of an antenna should find useful applications in portable wireless systems. Good agreements are found between simulated and measured antenna gain patterns and return loss.
2009-09-16
PIER
Vol. 96, 237-249
Bright and Dark Soliton Generation in a Left-Handed Nonlinear Transmission Line with Series Nonlinear Capacitors
Fatemeh Gharakhili , Mahmoud Shahabadi and Mohammad Hakkak
In this article, we demonstrate that in the case of a positive group velocity left-handed nonlinear (LH-NL) transmission line with series nonlinear capacitances, the spatial derivative of the voltage distribution satisfies the nonlinear Schrödinger (NLS) equation. Consequently, it will shown that a LH-NL transmission line with series varactors can be used to generate both bright and dark solitons similar to a composite right-left-handed (CRLH) transmission line periodically loaded with shunt varactors. The paper also discusses the conditions for generation of bright and dark solitons.
2009-09-16
PIER
Vol. 96, 217-236
Reduction of Leakage Magnetic Field in Electromagnetic Systems Based on Active Shielding Concept Verified by Eigenvalue Analysis
Faramarz Faghihi and Hossein Heydari
Leakage fields are one of the main issues in design of electromagnetic systems. Some of these fields close their paths through the core and air, giving rise to non-ideal behavior of the magnetic systems. This paper explains a novel concept of active shielding which consists of two compensation coils in series and generates a counter field opposite to the leakage fields leaking from an iron-core system. As the method is based on physical reasoning of electromagnetic coupled circuit theory, the design criterions for the compensating coils parameters, their number of turns and their adaptation to the systems, were considered. The state of the art is presented by a model which is verified by roots of system characteristic equations, using state equations. In a case study, this method was investigated in a 25kA (125kVA) current injection transformer (CIT) system delivering a secondary current as closely proportioned to the primary current as possible, using finite element method (FEM) simulation. This paper will also push the state of the art by reducing the age effect of the CIT through mechanical force reduction.
2009-09-16
PIER B
Vol. 18, 1-24
FDTD Modeling of the Breast: A Review
Martin O'Halloran , Raquel Cruz Conceicao , Dallan Byrne , Martin Glavin and Edward Jones
Microwave imaging is one of the most promising emerging imaging technologies for breast cancer detection. Microwave imaging exploits the dielectric contrast between normal and malignant breast tissue at microwave frequencies. Many UWB radar imaging techniques require the development of accurate numerical phantoms to model the propagation and scattering of microwave signals within the breast. The Finite Difference Time Domain (FDTD) method is the most commonly used numerical modeling technique used to model the propagation of Electromagnetic (EM) waves in biological tissue. However, it is critical that an FDTD model accurately represents the dielectric properties of the constituent tissues and the highly correlated distribution of these tissues within the breast. This paper presents a comprehensive review of the dielectric properties of normal and cancerous breast tissue, and the heterogeneity of normal breast tissue. Furthermore, existing FDTD models of the breast are examined and compared. This paper provides a basis for the development of more geometrically and dielectrically accurate numerical breast phantoms used in the development of robust microwave imaging algorithms.
2009-09-16
PIER B
Vol. 17, 343-359
The Contrast Source-Extended Born Model for 2D Subsurface Scattering Problems
Lorenzo Crocco , Michele D'Urso and Tommaso Isernia
In this paper, we describe a new full-wave integral equation model to tackle electromagnetic scattering problems arising from objects buried in layered media. Such a model is a rewriting of the usually adopted Contrast Source integral equation and is named Contrast Source-Extended Born (CS-EB) owing to this circumstance and to the relationship existing among its linearization and the Extended Born approximation. By means of this alternative formulation, it is possible to modify the relationship among the scatterer permittivity and the field it scatters, thus possibly reducing the degree of non-linearity of this latter relationship. Accordingly, in these cases, the adoption of the CS-EB model may be convenient with respect to traditional ones in both forward and inverse scattering problems.
2009-09-16
PIER B
Vol. 17, 327-342
Dispersion Analysis of FDTD Schemes for Doubly Lossy Media
Ding Yu Heh and Eng Leong Tan
This paper presents the 3-D dispersion analysis of finite-difference time-domain (FDTD) schemes for doubly lossy media, where both electric and magnetic conductivities are nonzero. Among the FDTD schemes presented are time-average (TA), time-forward (TF), time-backward (TB) and exponential time differencing (ETD). It is first shown that, unlike in electrically lossy media, the attenuation constant in doubly lossy media can be larger than its phase constant. This further calls for careful choice of cell size such that both wavelength and skin depth of the doubly lossy media are properly resolved. From the dispersion analysis, TF generally displays higher phase velocity and attenuation errors due to its first-order temporal accuracy nature compared to second-order ETD and TA. Although both have second-order temporal accuracy, ETD has generally lower phase velocity and attenuation errors than TA. This may be attributed to its closer resemblance to the solution of first-order differential equation. Numerical FDTD simulations in 1-D and 3-D further confirm these findings.
2009-09-16
PIER C
Vol. 10, 163-173
Effects of Coupling Coefficient on Static Properties of Bistable Qws-DFB Semiconductor Laser Amplifiers
Mahmoud Aleshams
We previously analyzed the effects of trapezoidal tapered gratings on the dispersive bistable characteristics of a quarter wavelength phase-shifted distributed feedback semiconductor laser amplifier (QWS-DFB-SLA). In this paper, we analyze the effects of coupling coefficient on the static bistable characteristics of a QWS-DFB SLA with a tapered or a non-tapered grating. Simulation results show that any change in the coupling coefficient can change the characteristics such as the spectral range of low-threshold bistable switching and the on-off switching contrast.
2009-09-15
PIER
Vol. 96, 205-215
A Non-Spurious Vector Spectral Element Method for Maxwell's Equations
Jiefu Chen and Qing Huo Liu
In this paper, a non-spurious vector spectral element method is proposed to solve Maxwell's equations using E and H as variables. The mixed-order curl-conforming basis functions are used for both variables to facilitate applying boundary and interface conditions; and the interpolation degree of basis functions for E is set different from that for H to suppress the spurious modes. The proposed method can be utilized in both time domain and frequency domain, and it is very suitable for the future implementation of discontinuous Galerkin spectral element method. Numerical results demonstrate the property of spurious-free and the spectral accuracy of this method. The method has also been implemented for the more general finite element method in time and frequency domains.
2009-09-13
PIER B
Vol. 17, 309-326
EM Field Coupling to Non-Uniform Microstrip Lines Using Coupled Multi-Conductor Strips Model
Hamid Khodabakhshi and Ahmad Cheldavi
A model for the two-dimensional analysis of microstrip lines, named Rigorously Coupled Multi-conductor Strip (RCMS) is introduced. In this model, the width of the strip of a microstrip line is subdivided into a large number of rigorously coupled narrow strips. So, a microstrip line can be considered as a coupled multi-conductor transmission line. Determination of the capacitance and inductance matrices of the model is introduced, also. The voltages and currents induced by electromagnetic fields for the coupled multi-condutor strips problem can be obtained using Bernardi's method. The effect of an external EM wave on a microstrip line with non-uniformity in its width is computed by adding the circuit model of transverse discontinuity (narrow slit) to the RCMS model. Finally, the validity and efficiency of the introduced method is investigated using previous work and full wave EM-simulation software.
2009-09-13
PIER B
Vol. 17, 293-308
On the Impact of Mutual Coupling Effects on the Psl Performances of Ads Thinned Arrays
Giacomo Oliveri , Luca Manica and Andrea Massa
In this paper, the performances of thinned arrays based on Almost Difference Sets are analyzed in the presence of mutual coupling effects. The geometry under test is composed by thin dipole elements and the arising mutual interactions are modeled by means of the induced EMF method. To assess the robustness of the ADS-based thinning technique also in such a non-ideal case, an extensive numerical analysis is carried out by considering several test cases characterized by different aperture sizes, lattice spacings, and thinning factors. The obtained results show that the peak sidelobe estimators deduced in the ideal case still keep their validity although, as expected, a deterioration usually arises due to the mutual coupling.