1. Vazquez, C., S. Ver Hoeye, G. Leon, M. Fernandez, L. F. Herran, and F. Las Heras, "Transmitting polarization agile microstrip antenna based on injection locked oscillators," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2427-2437, 2008.
doi:10.1163/156939308787543831 Google Scholar
2. Ver Hoeye, S., C. Vazquez, M. Fernandez, L. F. Herran, and F. Las Heras, "Receiving phased antenna array based on injection-locked harmonic self-oscillating mixers," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 645-651, 2009.
doi:10.1109/TAP.2009.2013439 Google Scholar
3. Ver Hoeye, S., F. Ramirez, and A. Suarez, "Nonlinear optimization tools for the design of high-efficiency microwave oscillators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 5, 189-191, 2004.
doi:10.1109/LMWC.2004.827869 Google Scholar
4. Herran, L. F., S. Ver Hoeye, and F. Las Heras, "Nonlinear optimization tools for the design of microwave high-conversion gain harmonic self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 1, 16-18, 2006.
doi:10.1109/LMWC.2005.861357 Google Scholar
5. Fernandez, M., S. Ver Hoeye, L. F. Herran, and F. Las Heras, "Nonlinear optimization of wide-band harmonic self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 347-349, 2008. Google Scholar
6. Fernandez, M., S. Ver Hoeye, L. F. Herran, and F. Las Heras, "Design of high-gain wide-band harmonic self-oscillating mixers," International Journal of Circuit Theory and Applications, 2009. Google Scholar
7. Ver Hoeye, S., L. F. Herran, M. Fernandez, and F. Las Heras, "Design and analysis of a microwave large-range variable phase-shifter based on an injection-locked harmonic self-oscillating mixer," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 6, 342-344, 2006.
doi:10.1109/LMWC.2006.875623 Google Scholar
8. Ver Hoeye, S., M. Gonzalez, M. Fernandez, C. Vazquez, L. F. Herran, and F. Las Heras, "Harmonic optimization of rationally synchronized oscillators," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 317-319, 2009.
doi:10.1109/LMWC.2009.2017604 Google Scholar
9. Giannini, F., C. Paoloni, and M. Ruggieri, "CAD-oriented lossy models for radial stubs," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 2, 305-313, 1988.
doi:10.1109/22.3519 Google Scholar
10. Sorrentino, R. and L. Roselli, "A new simple and accurate formula for microstrip radial stub," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 12, 480-482, 1992.
doi:10.1109/75.173401 Google Scholar
11. Shamsinejad, S., M. Soleimani, M. Tayarani, and N. Komjani, "Novel even harmonic mixer for 3G movile receivers," Progress In Electromagnetics Research M, Vol. 1, 69-77, 2008.
doi:10.2528/PIERM08012703 Google Scholar
12. Liang, J. and H. Y. D. Yang, "Varactor loaded tunable printed PIFA," Progress In Electromagnetics Research B, Vol. 15, 113-131, 2009.
doi:10.2528/PIERB09041108 Google Scholar
13. Nair, N. V. and A. K. Mallick, "An analysis of a width-modulated microstrip periodic structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 2, 200-204, 1984.
doi:10.1109/TMTT.1984.1132646 Google Scholar
14. Lyons, W. G., R. S. Withers, J. M. Hamm, and A. C. Anderson, "High-Tc superconductive line structures and signal conditioning networks," IEEE Transactions on Magnetics, Vol. 27, No. 2, 2932-2935, 1991.
doi:10.1109/20.133823 Google Scholar
15. Cheung, H. C. H., M. Holroyd, F. Huang, M. J. Lancaster, B. Aschermann, M. Getta, G. Mller, and H. Schlick, "125% bandwidth superconducting chirp filters," IEEE Transactions on Applied Superconductivity, Vol. 7, No. 2, 2359-2362, 1997.
doi:10.1109/77.621713 Google Scholar
16. Laso, M. A. G., T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, "Chirped delay lines in microstrip technology," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 12, 486-488, 2001.
doi:10.1109/7260.974554 Google Scholar
17. Rao, X. S., L. Chen, C. Y. Tan, J. Lu, and C. K. Ong, "Design of one-dimensional microstrip bandstop filters with continuous patterns based on fourier trasform," IEE Electronics Letters, Vol. 39, No. 1, 64-65, 2003.
doi:10.1049/el:20030082 Google Scholar
18. Laso, M. A. G., T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, "Real-time spectrum analysis in microstrip technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 705-717, 2003.
doi:10.1109/TMTT.2003.808741 Google Scholar
19. Schwartz, J. D., J. Azaa, and D. V. Plant, "A fully electronic system for the time magnification of ultra-wideband signals," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 2, 327-334, 2007.
doi:10.1109/TMTT.2006.890069 Google Scholar
20. Schwartz, J. D., M. M. Guttman, J. Azaa, and D. V. Plant, "Multichannel filters using chirped bandgap structures in microstrip technology," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 577-579, 2007.
doi:10.1109/LMWC.2007.901765 Google Scholar