Vol. 18
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-09-16
FDTD Modeling of the Breast: a Review
By
Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009
Abstract
Microwave imaging is one of the most promising emerging imaging technologies for breast cancer detection. Microwave imaging exploits the dielectric contrast between normal and malignant breast tissue at microwave frequencies. Many UWB radar imaging techniques require the development of accurate numerical phantoms to model the propagation and scattering of microwave signals within the breast. The Finite Difference Time Domain (FDTD) method is the most commonly used numerical modeling technique used to model the propagation of Electromagnetic (EM) waves in biological tissue. However, it is critical that an FDTD model accurately represents the dielectric properties of the constituent tissues and the highly correlated distribution of these tissues within the breast. This paper presents a comprehensive review of the dielectric properties of normal and cancerous breast tissue, and the heterogeneity of normal breast tissue. Furthermore, existing FDTD models of the breast are examined and compared. This paper provides a basis for the development of more geometrically and dielectrically accurate numerical breast phantoms used in the development of robust microwave imaging algorithms.
Citation
Martin O'Halloran, Raquel Cruz Conceicao, Dallan Byrne, Martin Glavin, and Edward Jones, "FDTD Modeling of the Breast: a Review," Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009.
doi:10.2528/PIERB09080505
References

1. "Cancer facts and figures 2008,", American Cancer Society, 2008.

2. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, National Academy Press, 2001.
doi:10.1056/NEJM199804163381601

3. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," New Eng. J. Med., Vol. 338, 1089-1096, 1998.

4. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radio Graphics, Vol. 18, 1137-1154, 1998.

5. Bird, R. E., T. Wallace, and B. Yankaskas, "Analysis of cancers missed at screening mammograph," Radiology, Vol. 184, 613-617, 1992.
doi:10.1056/NEJMoa065447

6. Lehman, C. D., C. Gatsonis, C. K. Kuhl, and R. E. Hendrick, "MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer," New Eng. J. Med., Vol. 356, No. 13, 1295-1303, Mar. 2007.
doi:10.1097/00002142-199802000-00003

7. Viehweg, P., I. Paprosch, M. Strassinopoulou, and S. H. Heywang-Kobrunner, "Contrast-enhanced magnetic resonance imaging of the breast: Interpretation guidelines," Top. Magn. Reson. Imaging, Vol. 9, No. 1, 17-43, Feb. 1998.
doi:10.1016/S0720-048X(97)01166-2

8. Maestro, C., F. Cazenave, P. Y. Marcy, J. N. Bruneton, and C. Chauvel, "Systematic ultrasonography in asymptomatic dense," Eur. J. Radiol., Vol. 26, No. 3, 254-256, Feb. 1998.
doi:10.1063/1.1149986

9. Wang, L., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Rev. Sci. Instrum., Vol. 70, No. 9, 3744-3748, 1991.
doi:10.1063/1.1764609

10. Li, D., P. M. Meaney, T. Raynolds, S. A. Pendergrass, M. W. Fanning, and K. D. Paulsen, "Parallel-detection microwavespectroscopy system for breast cancer imagin," Rev. Sci. Instrum., Vol. 75, No. 7, 2305-2313, 2004.

11. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434MHz --- feasibility study," Radiology, Vol. 216, No. 1, 279-283, 2000.
doi:10.1109/10.942596

12. Bulyshev, A., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001.
doi:10.1109/22.883861

13. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000.
doi:10.1109/42.781016

14. Meaney, P. M. and K. D. Paulsen, "Nonactive antenna compensation for fixed array microwave imaging --- Part II: imaging results," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999.
doi:10.1109/22.859490

15. Souvorov, A., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatis, "Two dimensional analysis of a microwave flat antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, Aug. 2000.

16. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1053-1056, Sep. 2001.

17. Liu, Q. H., Z. Q. Zhang, T. Wang, J. A. Byran, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging 1-2d forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, 123-133, Jan. 2002.
doi:10.1109/10.730440

18. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Trans. Biomed. Eng., Vol. 45, 1470-1479, 1998.

19. Sha, L., E. R. Ward, and B. Stroy, "Confocal, synthetic-impulse, millimeter wave system for imaging concealed dielectric and metallic objects," Proc. North American Radio Science Meeting, Montreal, Canada, Jul. 1997.

20. Enk, J. O., G. T. Dubiel, and J. E. Bridges, "Millimeter-wave FM radar weapons detection system," Final Report, FAA Contract DTFA03-87-C00056, Jul. 1992.
doi:10.1109/8.774131

21. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Trans. Antennas and Propagat., Vol. 47, 783-791, May 1999.
doi:10.1109/TBME.2002.800759

22. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 47, 812, 2002.

23. Fear, E. C. and M. A. Stuchly, "Microwave system for breast cancer detection," New Eng. J. Med., Vol. 9, 470-472, Nov. 1999.
doi:10.1109/TMTT.2003.808630

24. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast cancer detection," IEEE Trans. Microwave Theory Tech., Vol. 51, 887-892, Mar. 2003.

25. Fear, E., J. Sill, and M. Stuchly, "Microwave system for breast tumor detection: Experimental concept evaluation," IEEE AP-S International Symposium and USNC/URSI Radio Science Meeting, San Antonio, Texas, Jun. 2002.

26. "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, 130-132, 2001.
doi:10.1109/MAP.2005.1436217

27. Li, X., E. J. Bond, and S. H. B. Veen, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, Feb. 2005.

28. Craddock, I. J., R. Nilavalan, J. Leendertz, A. Preece, and R. Benjamin, "Experimental investigation of real aperture synthetically organised radar for breast cancer detection," IEEE AP-S International Symposium, Washington, DC, 2005.
doi:10.1002/mop.11199

29. Hernandez-Lopez, M., M. Quintillan-Gonzalez, S. Garcia, A. Bretones, and R. Martin, "A rotating array of antennas for confocal microwave breast imaging," Microw. Opt. Technol. Lett., Vol. 39, 307-311, 2003.

30. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breas tissue at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, 1994.

31. Joines, W., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, 1993.
doi:10.1109/10.1374

32. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, No. 4, 257-263, 1988.

33. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House Publishers, Jun. 30, 2005.
doi:10.1088/0031-9155/37/1/014

34. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, 193-210, 1992.
doi:10.1023/B:BREA.0000032979.52773.fb

35. Choi, J. W., J. Cho, Y. Lee, J. Yim, B. Kang, K. K. Oh, W. H. Jung, H. J. Kim, C. Cheon, H. Lee, and Y. Kwon, "Microwave detection of metastatasized breast cancer cells in the lymph node; potential application for sentinel lymphadenectomy," Breast Cancer Research and Treatment, Vol. 86, 107-115, 2004.

36. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, 1841-1853, 2000.
doi:10.1088/0031-9155/52/10/001

37. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/20/002

38. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, and W. Temp, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.

39. Stuchly, M. A. and S. S. Stuchly, "Dielectric properties of biological substances-tabulated," J. Microwave Power, Vol. 14, No. 1, Sept. 1980.

40. Foster, K. R. and H. P. Schwan, "Dielectric properties of tissues and biological materials: A critial review," Crit. Rev. Biomed. Eng., Vol. 17, 25-104, 1989.
doi:10.1006/jcph.1994.1159

41. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.

42. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 3, 1984-1863, 2000.
doi:10.1109/TAP.2003.815446

43. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., 1690-1705, 2003.
doi:10.1163/156939303322235860

44. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, 357-381, 2003.

45. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng..
doi:10.1109/TBME.2006.878058

46. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multi-static adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, 1647-1657, 2006.

47. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, Scattering by Nonspherical Particles: Theory, Measurements and Applications, Academy Press, 2000.

48. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Trans. Biomed. Eng..
doi:10.1109/TMTT.2004.831985

49. Kosmas, P., C. M. Rappaport, and E. Bishop, "Modeling with the fdtd method for microwave breast cancer detection," IEEE Trans. Microwave Theory Tech., Vol. 52, 1890-1897, Aug. 2004.