1. "Cancer facts and figures 2008,", American Cancer Society, 2008. Google Scholar
2. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, National Academy Press, 2001.
doi:10.1056/NEJM199804163381601
3. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," New Eng. J. Med., Vol. 338, 1089-1096, 1998. Google Scholar
4. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radio Graphics, Vol. 18, 1137-1154, 1998. Google Scholar
5. Bird, R. E., T. Wallace, and B. Yankaskas, "Analysis of cancers missed at screening mammograph," Radiology, Vol. 184, 613-617, 1992.
doi:10.1056/NEJMoa065447 Google Scholar
6. Lehman, C. D., C. Gatsonis, C. K. Kuhl, and R. E. Hendrick, "MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer," New Eng. J. Med., Vol. 356, No. 13, 1295-1303, Mar. 2007.
doi:10.1097/00002142-199802000-00003 Google Scholar
7. Viehweg, P., I. Paprosch, M. Strassinopoulou, and S. H. Heywang-Kobrunner, "Contrast-enhanced magnetic resonance imaging of the breast: Interpretation guidelines," Top. Magn. Reson. Imaging, Vol. 9, No. 1, 17-43, Feb. 1998.
doi:10.1016/S0720-048X(97)01166-2 Google Scholar
8. Maestro, C., F. Cazenave, P. Y. Marcy, J. N. Bruneton, and C. Chauvel, "Systematic ultrasonography in asymptomatic dense," Eur. J. Radiol., Vol. 26, No. 3, 254-256, Feb. 1998.
doi:10.1063/1.1149986 Google Scholar
9. Wang, L., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Rev. Sci. Instrum., Vol. 70, No. 9, 3744-3748, 1991.
doi:10.1063/1.1764609 Google Scholar
10. Li, D., P. M. Meaney, T. Raynolds, S. A. Pendergrass, M. W. Fanning, and K. D. Paulsen, "Parallel-detection microwavespectroscopy system for breast cancer imagin," Rev. Sci. Instrum., Vol. 75, No. 7, 2305-2313, 2004. Google Scholar
11. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434MHz --- feasibility study," Radiology, Vol. 216, No. 1, 279-283, 2000.
doi:10.1109/10.942596 Google Scholar
12. Bulyshev, A., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001.
doi:10.1109/22.883861 Google Scholar
13. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000.
doi:10.1109/42.781016 Google Scholar
14. Meaney, P. M. and K. D. Paulsen, "Nonactive antenna compensation for fixed array microwave imaging --- Part II: imaging results," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999.
doi:10.1109/22.859490 Google Scholar
15. Souvorov, A., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatis, "Two dimensional analysis of a microwave flat antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, Aug. 2000. Google Scholar
16. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1053-1056, Sep. 2001. Google Scholar
17. Liu, Q. H., Z. Q. Zhang, T. Wang, J. A. Byran, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging 1-2d forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, 123-133, Jan. 2002.
doi:10.1109/10.730440 Google Scholar
18. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Trans. Biomed. Eng., Vol. 45, 1470-1479, 1998. Google Scholar
19. Sha, L., E. R. Ward, and B. Stroy, "Confocal, synthetic-impulse, millimeter wave system for imaging concealed dielectric and metallic objects," Proc. North American Radio Science Meeting, Montreal, Canada, Jul. 1997. Google Scholar
20. Enk, J. O., G. T. Dubiel, and J. E. Bridges, "Millimeter-wave FM radar weapons detection system," Final Report, FAA Contract DTFA03-87-C00056, Jul. 1992.
doi:10.1109/8.774131 Google Scholar
21. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Trans. Antennas and Propagat., Vol. 47, 783-791, May 1999.
doi:10.1109/TBME.2002.800759 Google Scholar
22. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 47, 812, 2002. Google Scholar
23. Fear, E. C. and M. A. Stuchly, "Microwave system for breast cancer detection," New Eng. J. Med., Vol. 9, 470-472, Nov. 1999.
doi:10.1109/TMTT.2003.808630 Google Scholar
24. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast cancer detection," IEEE Trans. Microwave Theory Tech., Vol. 51, 887-892, Mar. 2003. Google Scholar
25. Fear, E., J. Sill, and M. Stuchly, "Microwave system for breast tumor detection: Experimental concept evaluation," IEEE AP-S International Symposium and USNC/URSI Radio Science Meeting, San Antonio, Texas, Jun. 2002. Google Scholar
26. "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, 130-132, 2001.
doi:10.1109/MAP.2005.1436217 Google Scholar
27. Li, X., E. J. Bond, and S. H. B. Veen, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, Feb. 2005. Google Scholar
28. Craddock, I. J., R. Nilavalan, J. Leendertz, A. Preece, and R. Benjamin, "Experimental investigation of real aperture synthetically organised radar for breast cancer detection," IEEE AP-S International Symposium, Washington, DC, 2005.
doi:10.1002/mop.11199 Google Scholar
29. Hernandez-Lopez, M., M. Quintillan-Gonzalez, S. Garcia, A. Bretones, and R. Martin, "A rotating array of antennas for confocal microwave breast imaging," Microw. Opt. Technol. Lett., Vol. 39, 307-311, 2003. Google Scholar
30. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breas tissue at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, 1994. Google Scholar
31. Joines, W., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, 1993.
doi:10.1109/10.1374 Google Scholar
32. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, No. 4, 257-263, 1988. Google Scholar
33. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House Publishers, Jun. 30, 2005.
doi:10.1088/0031-9155/37/1/014
34. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, 193-210, 1992.
doi:10.1023/B:BREA.0000032979.52773.fb Google Scholar
35. Choi, J. W., J. Cho, Y. Lee, J. Yim, B. Kang, K. K. Oh, W. H. Jung, H. J. Kim, C. Cheon, H. Lee, and Y. Kwon, "Microwave detection of metastatasized breast cancer cells in the lymph node; potential application for sentinel lymphadenectomy," Breast Cancer Research and Treatment, Vol. 86, 107-115, 2004. Google Scholar
36. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, 1841-1853, 2000.
doi:10.1088/0031-9155/52/10/001 Google Scholar
37. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
38. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, and W. Temp, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007. Google Scholar
39. Stuchly, M. A. and S. S. Stuchly, "Dielectric properties of biological substances-tabulated," J. Microwave Power, Vol. 14, No. 1, Sept. 1980. Google Scholar
40. Foster, K. R. and H. P. Schwan, "Dielectric properties of tissues and biological materials: A critial review," Crit. Rev. Biomed. Eng., Vol. 17, 25-104, 1989.
doi:10.1006/jcph.1994.1159 Google Scholar
41. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994. Google Scholar
42. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 3, 1984-1863, 2000.
doi:10.1109/TAP.2003.815446 Google Scholar
43. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., 1690-1705, 2003.
doi:10.1163/156939303322235860 Google Scholar
44. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, 357-381, 2003. Google Scholar
45. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng..
doi:10.1109/TBME.2006.878058 Google Scholar
46. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multi-static adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, 1647-1657, 2006. Google Scholar
47. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, Scattering by Nonspherical Particles: Theory, Measurements and Applications, Academy Press, 2000.
48. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Trans. Biomed. Eng..
doi:10.1109/TMTT.2004.831985 Google Scholar
49. Kosmas, P., C. M. Rappaport, and E. Bishop, "Modeling with the fdtd method for microwave breast cancer detection," IEEE Trans. Microwave Theory Tech., Vol. 52, 1890-1897, Aug. 2004. Google Scholar