Vol. 9
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-09-19
Wide-Angle Reflection Wave Polarizers Using Inhomogeneous Planar Layers
By
Progress In Electromagnetics Research M, Vol. 9, 9-20, 2009
Abstract
In this paper, inhomogeneous planar layers are optimally designed as reflection wave polarizers in a desired incidence angles range. First, the electric permittivity function of the structure is expanded in a truncated Fourier series. Then, the optimum values of the coefficients of the series are obtained through an optimization approach. The validation and the performance of the proposed structure are verified using some examples.
Citation
Mohammad Khalaj-Amirhosseini Sayed Razavi , "Wide-Angle Reflection Wave Polarizers Using Inhomogeneous Planar Layers," Progress In Electromagnetics Research M, Vol. 9, 9-20, 2009.
doi:10.2528/PIERM09070301
http://www.jpier.org/PIERM/pier.php?paper=09070301
References

1. MacNeille, S. M. and Beam splitter, , U. S. patent 2, 403, 731, July 9, 1946.
doi:10.1364/AO.28.002847

2. Mouchart, J., J. Begel, and E. Duda, "Modified MacNeille cube polarizer for a wide angular field," Appl. Opt., Vol. 28, 2847-2853, 1989.
doi:10.1080/09500348914550841

3. Monga , J. C., "Multilayer thin-film polarizers with reduced electric-field intensity," J. Mod. Opt., Vol. 36, 769-784, 1989.
doi:10.1364/AO.35.002221

4. Li, L. and J. A. Dobrowolski, "Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter," Appl. Opt., Vol. 35, 2221-2225, 1996.
doi:10.1364/AO.36.000307

5. Thomsen, M. and Z. L. Wu, "Polarizing and reflective coatings based on half-wave layer pairs," Appl. Opt., Vol. 36, 307-313, 1997.
doi:10.1364/AO.39.002754

6. Li, L. and J. A. Dobrowolski, "High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle," Appl. Opt., Vol. 39, 2754-2771, 2000.
doi:10.2528/PIER08093003

7. Awasthi, S. K. and S. P. Ojha, "Wide-angle, broadband plate polarizer with 1D photonic crystal," Progress In Electromagnetics Research, Vol. 88, 321-335, 2008.

8. Hecht, E., , 4th Ed., 349, Optics, Addison Wesley, 2002.
doi:10.1364/AO.37.001194

9. Dummer, D. J., S. G. Kaplan, L. M. Hanssen, A. S. Pine, and Y. Zong, "High-quality Brewster's angle polarizer for broadband infrared application," Appl. Opt., Vol. 37, 1194-1204, 1998.
doi:10.1364/AO.31.005431

10. McCormick, F. B., F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, and J. M. Sasian, "Experimental investigation of a free-space optical switching network by using symmetric selfelectro-optic-effect devices," Appl. Opt., Vol. 31, 5431-5446, 1992.
doi:10.1364/AO.25.000483

11. Ojima, M., A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, "Compact magnetooptical disk for coded data storage," Appl. Opt., Vol. 25, 483-489, 1986.
doi:10.1016/0030-4018(71)90236-7

12. Kunstmann, P. and H. J. Spitschan, "General complex amplitude addition in a polarization interferometer in the detection of pattern differences ," Opt. Commun., Vol. 4, 166-168, 1971.
doi:10.2528/PIERL08112303

13. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Mulifunctional meander line polarizer," Progress In Electromagnetics Research Letters, Vol. 6, 55-60, 2009.
doi:10.2528/PIER08080303

14. Huang, H., Y. Fan, B.-I. Wu, and J. A. Kong, "Tunable TE/TM wave splitter using a gyrotropic slab ," Progress In Electromagnetics Research, Vol. 85, 367-380, 2008.
doi:10.1002/(SICI)1098-2760(19990805)22:3<218::AID-MOP20>3.0.CO;2-Q

15. Bilotti, F., A. Toscano, and L. Vegni, "Very fast design formulas for microwave nonhomogeneous media filters ," Microw. Opt. Tech. Letters, Vol. 22, No. 3, 218-221, 1999.
doi:10.1109/8.843679

16. Vegni, L. and A. Toscano, "Full-wave analysis of planar stratified with inhomogeneous layers," IEEE Trans. Antennas and Propagation, Vol. 48, No. 4, 631-633, April 2000.
doi:10.1002/(SICI)1098-2760(19990805)22:3<218::AID-MOP20>3.0.CO;2-Q

17. Toscano, A., L. Vegni, and F. Bilotti, "A new efficient method of analysis for inhomogeneous media shields and filters," Microw. Opt. Tech. Letters, Vol. 22, No. 3, 218-221, 1999.

18. Khalaj-Amirhosseini, M., "Wideband flat radomes using inhomo-geneous planar layers," Int. Journal of Antennas and Propagation, Vol. 2008, 869720-869725, 2008.

19. Khalaj-Amirhosseini, M., "Using inhomogeneous planar layers as impedance matchers between two different mediums," Int. Journal of Microwave Science and Technology, Vol. 2008, 869720, 1-5, 2008.
doi:10.2528/PIERB07120601

20. Khalaj-Amirhosseini, M., "To analyze inhomogeneous planar lay-ers by cascading thin linear layers," Progress In Electromagnetics Research B, Vol. 3, 95-104, 2008.

21. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using finite difference method," Progress In Electromagnetics Research, Vol. 59, 187-198, 2006.
doi:10.1109/TAP.2005.861577

22. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using Taylor's series expansion," IEEE Trans. Antennas and Propagation, Vol. 54, No. 1, 130-135, January 2006.
doi:10.1109/TAP.2006.889923

23. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using fourier series expansion," IEEE Trans. Antennas and Propagation, Vol. 55, No. 2, 489-493, February 2007.
doi:10.2528/PIER07030802

24. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using equivalent sources method," Progress In Electromagnetics Research, Vol. 72, 61-73, 2007.
doi:10.1163/156939307783152984

25. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using the method of moments," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1925-1937, 2007.
doi:10.1049/iet-map.2008.0027

26. Khalaj-Amirhosseini, M., "An approximated closed form solution for inhomogeneous planar layers," IET Proc. Microwaves, Antennas and Propagation, Vol. 3, No. 6, 899-905, 2009.