Vol. 6
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-03
Adaptive Neuro-Fuzzy Models for Conventional Coplanar Waveguides
By
Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008
Abstract
In this work a new method based on the adaptive neuro-fuzzy inference system (ANFIS) was successfully introduced to determine the characteristic parameters, effective permittivities and characteristic impedances, of conventional coplanar waveguides. The ANFIS has the advantages of expert knowledge of fuzzy inference system and learning capability of neural networks. A hybrid-learning algorithm, which combines least-square method and backpropagation algorithm, is used to identify the parameters of ANFIS. There are very good agreement between the results of ANFIS models, experimental works, conformal mapping technique, spectral domain approach and a commercial electromagnetic simulator, MMICTL.
Citation
Mustafa Turkmen Sabri Kaya Celal Yildiz Kerim Guney , "Adaptive Neuro-Fuzzy Models for Conventional Coplanar Waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008.
doi:10.2528/PIERB08031208
http://www.jpier.org/PIERB/pier.php?paper=08031208
References

1. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes and line-to-line coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, 260-266, 1987.
doi:10.1109/TMTT.1987.1133637

2. Carlsson, E. and S. Gevorgian, "Conformal mapping of the field and charge distributions in multilayered substrate CPWs," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1544-1552, 1999.
doi:10.1109/22.780407

3. Bedair, S. S. and I. Wolff, "Fast, accurate and simple approximate analysis formulas for calculating the parameters of supported coplanar waveguides for (M)MIC’s," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 41-48, 1992.
doi:10.1109/22.108321

4. Gevorgian, S. S., "Basic characteristics of two layered substrate coplanar waveguides," Electron. Letters, Vol. 30, 1236-1237, 1994.
doi:10.1049/el:19940861

5. Wen, C. P., "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105

6. Chen, E. and S. Y. Chou, "Characteristics of coplanar transmission lines on multilayer substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 939-945, 1997.
doi:10.1109/22.588606

7. Cheng, K. K. M. and I. D. Robertson, "Numerically efficient spectral domain approach to the quasi-TEM analysis of supported coplanar waveguide structures: Modeling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 1958-1965, 1994.
doi:10.1109/22.320780

8. Shigesawa, H. and M. Tsuji, "Conductor-backed slot line and coplanar waveguide: Dangers and full-wave analysis," IEEE MTT-S Dig., 199-202, 1988.

9. Aksun, M. I. and H. Morkoc, "GaAs on Si as a substrate for microwave and millimeter-wave monolithic integration," IEEE Transactions Microwave Theory Techniques, Vol. 36, 160-163, 1988.
doi:10.1109/22.3500

10. Knorr, J. B. and K. D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, 541-548, 1975.
doi:10.1109/TMTT.1975.1128624

11. Davies, J. B. and D. M. Syahkal, "Spectral domain solution of arbitrary coplanar transmission lines with multilayer substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, 143-149, 1977.
doi:10.1109/22.76444

12. Chang, C. N., W. C. Chang, and C. H. Chen, "Full-wave analysis of multilayer coplanar lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 747-750, 1991.

13. Schroeder, W. and I. Wolff, "Full-wave analysis of the influence of conductor shape and structure details on losses in coplanar waveguide," Microwave Symposium Digest, IEEE MTT-S International, Vol. 3, 1273-1276, 1995.

14. Jansen, R., "Hybrid mode analysis of end effects of planar microwave and millimeter wave transmission line," IEE Proceedings, Part H-Microwaves, Optics and Antennas, Vol. 128, 77-86, 1981.
doi:10.1109/TMTT.1969.1126946

15. Hilberg, W., "From approximations to exact relations for characteristic impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 259-265, 1969.
doi:10.1109/21.256541

16. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans Systems Man and Cybernetics, Vol. 23, 665-685, 1993.

17. Jang, J.-S. R., C.T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, Upper Saddle River, NJ, 1997.

18. Brown, M. and C. Haris, Neuro-Fuzzy Adaptive Modeling and Control, Prentice-Hall, Englewood Cliffs, NJ, 1994.

19. Constantin, V. A., Fuzzy Logic and Neuro-Fuzzy Applications Explained, Prentice-Hall, Englewood Cliffs, NJ, 1995.

20. Lin, C. T. and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice-Hall, Upper Saddle River, NJ, 1996.
doi:10.1163/156939304322749599

21. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates," Journal of Electromagnetic Waves and Applications, Vol. 18, 23-39, 2004.
doi:10.1109/LMWC.2005.863245

22. Rahouyi, E. B., J. Hinojosa, and J. Garrigos, "Neuro-fuzzy inference modeling techniques for microwave components," IEEE Microwave and Wireless Components Letters, Vol. 16, 72-74, 2006.

23. AC Microwave’s MMICTL in Linmic Interconnect, Version 3, www.linmic.com, 2006.
doi:10.1049/el:19730261

24. Dupuis, P. A. J. and C. K. Campbell, "Characteristic impedance of surface-strip coplanar waveguides," Electron. Letters, Vol. 9, 354-355, 1973.
doi:10.1049/el:19790065

25. Becker, J. P. and D. Jager, "Electrical properties of coplanar transmission lines on lossless and lossy substrate," Electron. Letters, Vol. 15, 88-90, 1979.

26. Riad, A. A., S. M. Riad, M. Ahmad, F. W. Stephenson, and R. A. Ecker, "Thick-film coplanar strip and slot lines for microwave and wideband integrated circuits," Int. Microelectronics Symp. Dig., 8-21, Reno, Nevada, 1982.