Vol. 100
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-05-24
General Electromagnetic Simulation of Radar Signals Backscattered from Metallic Wind Turbines
By
Progress In Electromagnetics Research B, Vol. 100, 91-107, 2023
Abstract
The backscattering of electromagnetic waves incident on a rotating metallic wind turbine (WT) is analyzed by using the Physical Optics method. The model developed is general and allows the computation of the spectral Doppler shift of the backscattered waves. All the parameters involved are taken into account, relative to incident wave direction, wind horizontal direction, WT geometric and electromagnetic properties. Numerical computations are carried out for various cases and presented relative to a search radar.
Citation
Victoria Sgardoni, and Nikolaos Uzunoglu, "General Electromagnetic Simulation of Radar Signals Backscattered from Metallic Wind Turbines," Progress In Electromagnetics Research B, Vol. 100, 91-107, 2023.
doi:10.2528/PIERB23020502
References

1. Leonov, S., O. Hubbard, Z. Ding, H. Ghadaki, J. Wang, and T. Ponsford, "Advanced mitigating techniques to remove the effects of wind turbines and wind farms on primary surveillance radars," IEEE 2008 Radar Conference, Rome, doi:10.1109/RADAR.2008.4721114, Jun. 2008.

2. US Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs "Radar interference analysis for renewable energy facilities on the atlantic outer continental shelf,", OCS Study BOEM 2020-039, Aug. 2020.

3. De La Vega, D., J. Matthews, L. Norin, and I. Angulo, "Mitigation techniques to reduce the impact of wind turbines on radar services," MDPI, Energies (Special issue Wind Turbines), Vol. 6, No. 6, 2859-2873, doi: 10.3390/en6062859, Jun. 2013.

4. Wang, W.-Q., "Detecting and mitigating wind turbine clutter for airspace radar systems," Hindawi, The Scienti c World Journal, Vol. 2013, No. Article ID 385182, 2013.

5. Bachmann, S., M. Lockheed, Y. Al-Rashid, P. Bronecke, R. Palmer, and B. Isom, "Suppression of the wind farm contribution from the atmospheric radar returns," 26th Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Jan. 2010.

6. Office of the Director of Defense Research and Engineering "The effect of windmill farms on military readiness,", 2006 Report to the Congressional Defense Committees, Washington DC, 20301, 2006.

7. Cuong, T., "Radar cross section (RCS) simulation for wind turbines,", Naval Postgraduate School, Monterey, California, http://hdl.handle.net/10945/34754, 2013-06.

8. Shen, M., X. Wang, D. Wu, and D. Zhu, "Wind turbine clutter mitigation for weather radar by an improved low-rank matrix recovery method," Progress In Electromagnetics Research M, Vol. 88, 191-199, doi:10.2528/PIERM19103101, 2020.

9. Hegler, S. and D. Plettemeier, "Simulative investigation of the radar cross section of wind turbines," MDPI, Applied Sciences, Vol. 9, No. 19, 4024, Sep. 2019, doi: 10.3390/app9194024.
doi:10.3390/app9194024

10. Lainer, M., J. Figueras, I Ventura, Z. Schauwecker, M. Gabella, M. F.-Bolanos, R. Pauli, and J. Grazioli, "Insights into wind turbine re ectivity and radar cross-section (RCS) and their variability using X-band weather radar observations," Atmos. Meas. Tech. (AMT), Vol. 14, 3541-3560, https://doi.org/10.5194/amt-14-3541-2021, 2021.

11. Kent, B. M., K. C. Hil, A. Buterbaugh, G. Zelinski, R. Hawley, L. Cravens, Tri-Van, C. Vogel, and T. Coveyou, "Dynamic radar cross section and radar doppler measurements of commercial general electric windmill power turbines part 1: Predicted and measured radar signatures," IEEE Antennas and Propagation Magazine, Vol. 50, No. 2, 211-219, doi: 10.1109/MAP.2008.4562424, Apr. 2008.
doi:10.1109/MAP.2008.4562424

12. Schubel, P. J. and R. J. Crossley, "Wind turbine blade design," MDPI, Energies, Vol. 5, No. 9, 3425-3449, doi:10.3390/en5093425, 2012.
doi:10.3390/en5093425