Vol. 9
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-09-08
On Measuring the Permittivity Tensor of an Anisotropic Material from the Transmission Coefficients
By
Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008
Abstract
The permittivity tensor of an anisotropic material can be predicted with use of the presented technique. A slab of this substance possessing infinitesimal thickness is illuminated by a normally incident plane wave and rigorous expressions for the transmission coefficients are obtained. The derived formulas are linearly expanded with respect to the small thickness of the slice, while simple approximations of the material permittivities are produced by measuring the transmission coefficients for suitable polarizations. These simplified expressions provide a physical intuition about the use and the function of the anisotropy parameters which cannot be achieved via more precise but also more complex patterns. Some diagrams of the prediction error with respect to the dielectric constants, the size of the slab and the operating frequency are included and discussed.
Citation
Constantinos Valagiannopoulos, "On Measuring the Permittivity Tensor of an Anisotropic Material from the Transmission Coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005
References

1. Gomes Neto, M. L. C., A. L. P. S. Campos, and A. G. d'Assuncao, "Scattering analysis of frequency-selective surfaces on anisotropic substrates using the Hertz vector-potential method," Microwave and Optical Technology Letters, Vol. 44, 67-71, 2005.
doi:10.1002/mop.20549

2. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetic Research, Vol. 73, 297-325, 2007.
doi:10.2528/PIER07041203

3. Kokkorakis, G. C., "Scalar equations for scattering by rotationally symmetric radially inhomogeneous anisotropic sphere," Progress In Electromagnetics Research Letters, Vol. 3, 179-186, 2008.
doi:10.2528/PIERL08022201

4. Wang, M. Y., J. Xu, J. Wu, B. Wei, H. L. Li, T. Xu, and D. B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602

5. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Diffraction of hybrid modes in a cylindrical cavity resonator by a transverse circular slot with a plane anisotropic dielectric layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502

6. Chiu, C.-C. and R.-H. Yang, "Inverse scattering of biaxial cylinders," Microwave and Optical Technology Letters, Vol. 9, 292-302, 1995.
doi:10.1002/mop.4650090518

7. Cui, T. J., C. H. Liang, and W. Wiesbeck, "Closed-form solutions for one-dimensional inhomogeneous anisotropic medium in a special case — Part II: Inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 45, 942-948, 1997.
doi:10.1109/8.585741

8. Sheen, D. and D. Shepelsky, "Inverse scattering problem for a stratified anisotropic slab," Inverse Problem, Vol. 15, 499-514, 1999.
doi:10.1088/0266-5611/15/2/010

9. Chen, X., T. M. Grzegorczyk, and J. A. Kong, "Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium," Progress In Electromagnetics Research, Vol. 60, 1-18, 2006.
doi:10.2528/PIER05120601

10. Monzon, J. C. and N. J. Damaskos, "Two-dimensional scattering by a homogeneous anisotropic rod," IEEE Transactions on Antennas and Propagation, Vol. 34, 1243-1249, 1986.
doi:10.1109/TAP.1986.1143739

11. Ren, W. and X. B. Wu, "Application of an eigenfunction representation to the scattering of a plane wave by an anisotropically coated circular cylinder," Journal of Physics D: Applied Physics, Vol. 28, 1031-1039, 1995.
doi:10.1088/0022-3727/28/6/003

12. Born, M. and E. Wolf, Principles of Optics, 666, Eqn. (8), Pergamon Press, 1968.