Vol. 9
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-09-08
A High Gain Dual Stacked Aperture Coupled Microstrip Antenna for Wideband Applications.
By
Progress In Electromagnetics Research B, Vol. 9, 127-135, 2008
Abstract
This paper presents the design of a dual stacked microstrip antenna over the frequency range of 9.5-16 GHz. Investigations show that in the new structure the impedance bandwidth of the antenna is increased to 44% and the thickness of the antenna decreases to 0.14λ. Furthermore, the gain bandwidth of the antenna (above 8 dB) is increased to 5.1 GHz (40%).
Citation
Nasser Ghassemi, Jalil Rashed-Mohassel, Mohammad Hassan Neshati, Saeed Tavakoli, and Massoud Ghassemi, "A High Gain Dual Stacked Aperture Coupled Microstrip Antenna for Wideband Applications.," Progress In Electromagnetics Research B, Vol. 9, 127-135, 2008.
doi:10.2528/PIERB08072603
References

1. Kumar, G. and K. P. Ray, Broadband Microstrip Antenna, Artech House, USA, 2003.

2. Ray, K. P., S. Ghosh, and K. Nirmala, "Multilayer multiresonator circular microstrip antennas for broadband and dualband operations," Microwave and Optical Technology Letters, Vol. 47, 489-494, Dec. 2005.
doi:10.1002/mop.21208

3. Khodaei, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
doi:10.2528/PIERB07112201

4. Wang, F. J. and J. S. Zhang, "Wide band cavity-backed patch antenna for PCS/IMI2000/2.4 GHz WLAN," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801

5. Sharma, A. and G. Singh, "Design of single pin shorted three-dielectric-layered substrates rectangular patch microstrip antenna for communication system," Progress In Electromagnetics Research Letters, Vol. 2, 157-165, 2008.
doi:10.2528/PIERL08010703

6. Ray, I., M. Khan, D. Mondal, and A. K. Bhattacharjee, "Effect on resonant frequency for E-plane mutually coupled microstrip antennas," Microwave and Optical Technology Letters, Vol. 3, 133-140, 2008.

7. Ansari, J. A., P. Singh, S. K. Dubey, R. U. Khan, and B. R. Vishvakarma, "H-shaped stacked patch antenna for dual band operation," Progress In Electromagnetics Research B, Vol. 5, 291-302, 2008.
doi:10.2528/PIERB08031203

8. Svezhentsev, A. Y., "Some far field features of cylindrical microstrip antenna on an elementary small cylinder," Progress In Electromagnetics Research B, Vol. 7, 223-244, 2008.
doi:10.2528/PIERB08032201

9. Ansari, J. A., R. B. Ram, and P. Singh, "Analysis of a gapcoupled stacked annular ring microstrip antenna," Progress In Electromagnetics Research B, Vol. 4, 147-158, 2008.
doi:10.2528/PIERB08011103

10. Tokan, N. T. and F. Gunes, "Support vector characterization of the microstrip antennas based on measurements," Progress In Electromagnetics Research B, Vol. 5, 49-61, 2008.
doi:10.2528/PIERB08013006

11. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5-6 GHz wireless comunications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

12. Ghassemi, N., J. Rashed-Mohassel, M. H. Neshati, and M. Ghassemi, "Slot coupled microstrip antenna for ultra wideband applications in C and X bands," Progress In Electromagnetics Research M, Vol. 3, 15-25, 2008.
doi:10.2528/PIERM08051202

13. Guney, K. and N. Sarikaya, "Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms," Progress In Electromagnetics Research, Vol. 72, 279-306, 2007.
doi:10.2528/PIER07031302

14. Jiao, J.-J., G. Zhao, F.-S. Zhang, H.-W. Yuan, and Y.-C. Jiao, "Abroadband CPW-fed T-shaped slot antenna," Progress In Electromagnetics Research, Vol. 76, 237-242, 2007.
doi:10.2528/PIER07070904

15. Zheng, J. H., Y. Liu, and S.-X. Gong, "Aperture coupled microstrip antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 3, 61-68, 2008.
doi:10.2528/PIERL08013102

16. Jolani, F., A. M. Dadgarpour, and H. R. Hassani, "Compact Mslot folded patch antenna for WLAN," Progress In Electromagnetics Research Letters, Vol. 3, 35-42, 2008.
doi:10.2528/PIERL08012801

17. Ansari, J. A. and R. B. Ram, "E shaped patch symmetrically loaded with tunnel diodes for frequency agile/broadband operation," Progress In Electromagnetics Research B, Vol. 1, 29-42, 2008.
doi:10.2528/PIERB07101202

18. Abbaspour, M. and H. R. Hassani, "Wideband star-shaped microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 1, 2008.
doi:10.2528/PIERL07111505

19. Raja Abdullah, R. S. A., D. Yoharaaj, and A. Ismail, "Bandwidth enhancement technique in microstrip antenna for wireless applications," PIERS Online, Vol. 2, No. 6, 633-639, 2006.
doi:10.2529/PIERS060831214339

20. Sadat, S., M. Houshmand, and M. Roshandelm, "Design of a microstrip square-ring slot antenna filled by an H-shaped slot for UWB applications," Progress In Electromagnetics Research, Vol. 70, 191-198, 2007.
doi:10.2528/PIER07012002

21. Sadat, S., M. Fardis, F. Geran, and G. Dadashzadeh, "A compact microstrip square-ring slot antenna for UWB applications," Progress In Electromagnetics Research, Vol. 67, 173-179, 2007.
doi:10.2528/PIER06082901

22. Zulkifli, F. Y., F. Narpati, and E. T. Rahardjo, "S-shaped patch antenna fed by dual offset electromagnetically coupled for 5–6 GHz high speed network," PIER Online, Vol. 3, No. 2, 163-166, 2007.
doi:10.2529/PIERS060801042546

23. Targonski, S. D., R. B. Waterhouse, and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 46, 1245-1251, Sep. 1998.
doi:10.1109/8.719966

24. Tong, K. F., K. M. Luk, and K. F. Lee, "Wideband II-shaped aperture-coupled U-slot patch antenna," Microwave and Optical Technology Letters, Vol. 28, 70-72, Jan. 2001.
doi:10.1002/1098-2760(20010105)28:1<70::AID-MOP19>3.0.CO;2-N

25. Denidni, T. A. and L. Talbi, High Gain Microstrip Antenna Design for Broadband Wireless Applications, 511-517, Wiley Periodicals, Inc., 2003.

26. Ghassemi, N., M. H. Neshati, and J. Rashed-Mohassel, "A multilayer multiresonator aperture coupled microstrip antenna for ultra wideband operations," Proc. IEEE Applied Electromagnetic Conference 2007, Kolkata, India, Dec. 19–20, 2007.

27. Ansoft Designer Software, Version 3, Ansoft Corporation, PA.