1. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206 Google Scholar
2. Hu, C.-F., J.-D. Xu, N. Li, and L. Zhang, "Indoor accurate RCS measurement technique on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER08011402 Google Scholar
3. Tao, Y. B., H. Lin, and H. J. Bao, "Kd-tree based fast ray tracing for RCS," Prediction Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.
doi:10.2528/PIER08011305 Google Scholar
4. Xu, L., J. Tian, and X.-W. Shi, "A closed-form solution to analyze RCS of cavity with rectangular cross section," Progress In Electromagnetics Research, Vol. 79, 195-208, 2008.
doi:10.2528/PIER07090503 Google Scholar
5. Zhao, Y., X.-W. Shi, and L. Xu, "Modeling with nurbs surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903 Google Scholar
6. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayerd cylindrical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
doi:10.2528/PIER07090305 Google Scholar
7. Mallahzadeh, A. R., M. Soleimani, and J. Rashed-Mohassel, "RCS computation of airplane using parabolic equation," Progress In Electromagnetics Research, Vol. 57, 265-276, 2006.
doi:10.2528/PIER05080101 Google Scholar
8. Li, Y.-L., J.-Y. Huang, and M.-J. Wang, "Scattering cross section for airborne and its application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2341-2349, 2007.
doi:10.1163/156939307783134254 Google Scholar
9. Chen, X.-J. and X.-W. Shi, "Comments on a formula in radar cross section," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2389-2394, 2007.
doi:10.1163/156939307783134434 Google Scholar
10. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H.-L. Li, "FDTD study on scattering of metallic column covered by doublenegative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777 Google Scholar
11. Knott, E. F., et al. Radar Cross Section, Artech House, Inc., 1985.
12. Abd-El-Ranouf, H. E. and R. Mittra, "Scattering analysis of dielectric coated cones," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1857-1871, 2007. Google Scholar
13. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07120803 Google Scholar
14. Maliuzhinets, G. D., "Excitation, reflection and emission of surface waves from a wedge with given face impedance," Mathematical Physics, Vol. 3, No. 4, 752-755, 1958. Google Scholar
15. Manara, G., P. Nepa, and G. Pelosi, "Electromagnetics scattering by a right angled anisotropic impedance wedge," Electronic Letters, Vol. 32, No. 13, 1179-1180, 1996.
doi:10.1049/el:19960802 Google Scholar
16. Pelosi, G., G. Manara, and P. Nepa, "A UTD solution for the scattering by a wedge with anisotropic impedance face: Skew incidence case," IEEE Trans. Antennas and Propagat., Vol. 46, No. 4, 579-588, 1998.
doi:10.1109/8.664124 Google Scholar
17. Yuan, F. and G. Q. Zhu, "Electromagnetic diffraction at skew incidence by a wedge with anisotropic impedance faces," Radio Science, Vol. 40, No. 6, 2005, RS6014. Google Scholar
18. Bilow, H. J., "Scattering by an infinite wedge with tensor impedance boundary conditions — A moment method/physical optics solution for the currents," IEEE Trans. Antennas and Propagat., Vol. 39, No. 7, 767-773, 1991.
doi:10.1109/8.86874 Google Scholar
19. Gong, Z. Q., B. X. Xiao, G. Q. Zhu, and H. Y. Ke, "Improvements to the hybrid MM-PO technique for scattering of plane wave by an infinite wedge," IEEE Trans. Antennas and Propagat., Vol. 54, No. 1, 251-255, 2006.
doi:10.1109/TAP.2005.861511 Google Scholar
20. Pelosi, G., G. Manara, and M. Fallai, "Physical optics expressions for the fields scattered from anisotropic impedance flat plates," Microwave and Optical Technology Letters, Vol. 14, No. 6, 316-318, 1997.
doi:10.1002/(SICI)1098-2760(19970420)14:6<316::AID-MOP2>3.0.CO;2-L Google Scholar
21. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas Propagat. Mag., Vol. 39, 7-21, Aug. 1997.
doi:10.1109/74.632992 Google Scholar
22. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Antennas Propagat., Vol. 45, 343-353, Mar. 1997.
doi:10.1109/8.558650 Google Scholar
23. Michielssen, E., J. M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, 1024-1031, Jun./Jul. 1993.
doi:10.1109/22.238519 Google Scholar
24. Weile, D. S., E. Michielssen, and D. E. Goldberg, "Genetic algorithm design of pareto optimal broad-band microwave absorbers," IEEE Trans. Electromagnetic Compatibility, Vol. 38, 518-524, Aug. 1996.
doi:10.1109/15.536085 Google Scholar
25. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, 1999.
26. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1594-1606, Oct. 2000.
doi:10.1109/8.899676 Google Scholar
27. Gordon, W. B., "Far-field approximations to the Kirchhoff-Helmholtz representations of scattered fields," IEEE Trans. Antennas Propagat., Vol. 23, No. 5, 590-592, Jul. 1975. Google Scholar