Vol. 9
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-10-07
Fast and Optimal Design of a k-Band Transmit-Receive Active Antenna Array
By
Progress In Electromagnetics Research B, Vol. 9, 281-299, 2008
Abstract
An active-antenna array with 18 transmit elements and 18 receive elements is designed and fabricated. This T/R array can work at two different frequencies (19.5 GHz and 21.5 GHz) with multiple levels of isolation between the transmit and receive channels. A hybrid element-level vector finite element and adaptive multilevel fast multipole method (ELVFEM/AMLFMA) is applied to simulation the performance parameters of the array element and the full array fast. To obtained the maximum directivity of the array,the best distances of the T/R elements in the array are optimized by using the genetic algorithm (GE) combining with VFEM/AMLFMA. The design efficiency of the array is improved at a ratio of 30%. Finally the performance of the T/R array fabricated is measured in experiments and some good results are obtained.
Citation
Shaohua Yang, Qi-Zhong Liu, Jun Yuan, and Shi-Gang Zhou, "Fast and Optimal Design of a k-Band Transmit-Receive Active Antenna Array," Progress In Electromagnetics Research B, Vol. 9, 281-299, 2008.
doi:10.2528/PIERB08082205
References

1. Yuan, J., Q.-Z. Liu, and J.-L. Guo, "Fast parallel algorithm for electromagnetic scattering problem via vector-FEM/MLFMA method," Acta Electronica Sinica, Vol. 36, No. 3, 520-526, 2008.        Google Scholar

2. Vandelay, A., M. Von Nostrand, and K. Varnsen, "Signed-field analysis of surface mode losses," IEEE Microwave and Guided Wave Letters, 1989.        Google Scholar

3. Shih, Y. C. and T. Itoh, "Analysis of conductor-backed coplanar waveguide," Electronics Letters, Vol. 18, 538-540, June 1982.
doi:10.1049/el:19820365        Google Scholar

4. Kumar, B. P. and G. R. Branner, "Design of unequally spaced arrays for performance improvement," IEEE Trans. Antennas Propagat., Vol. 47, No. 3, 511-523, 1999.
doi:10.1109/8.768787        Google Scholar

5. Yan, K.-K. and Y. Lu, "Side-lobe reduction in array pattern synthesis using genetic algorithm," IEEE Trans. Antennas Propagat., Vol. 45, No. 7, 1117-1122, 1997.
doi:10.1109/8.596902        Google Scholar

6. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650        Google Scholar

7. Haupt, R. L., "An introduction to genetic algorithm for electromagnetics," IEEE Antennas Propagat. Mag., Vol. 37, No. 2, 7-15, 1995.
doi:10.1109/74.382334        Google Scholar

8. Yuan, J., Y. Qiu, J. Guo, Y. Zou, and Q.-Z. Liu, "Fast analysis of antenna mounted on electrically large composite objects," Progress In Electromagnetics Research, Vol. 80, 29-44, 2008.
doi:10.2528/PIER07111205        Google Scholar

9. Guo, J. L., J. Y. Li, and Q. Z. Liu, "Electromagnetic analysis of coupled conducting and dielectric targets using mom with a preconditioner," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 9, 1223-1236, 2005.
doi:10.1163/156939305775526007        Google Scholar

10. Guo, J. L., J. Y. Li, and Q. Z. Liu, "Analysis of antenna array with arbitrarily shaped radomes using fast algorithm based on VSIE," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1399-1410, 2006.
doi:10.1163/156939306779276811        Google Scholar

11. Qiu, Y., J. Yuan, J. Tian, and Y.-J. Xie, "Antenna position optimal design for reducing interference," 2004 International Symposium on EMC Proceedings, 689-693, June 2004.        Google Scholar

12. Hassani, H. R. and M. Jahanbakht, "Metho d of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008.
doi:10.2528/PIERB08010602        Google Scholar

13. Xiao, S.-Q., J. Chen, X.-F. Liu, and B.-Z. Wang, "Spatial focusing characteristics of time reversal UWB pulse transmission with different antenna arrays," Progress In Electromagnetics Research B, Vol. 2, 223-232, 2008.
doi:10.2528/PIERB07112203        Google Scholar

14. Rocca, P., L. Manica, and A. Massa, "An effective excitation matching method for the synthesis of optimal compromises between sum and difference patterns in planar arrays," Progress In Electromagnetics Research B, Vol. 3, 115-130, 2008.
doi:10.2528/PIERB07120403        Google Scholar

15. Naghshvarian-Jahromi, M., "Novel Ku band fan beam reflector back array antenna," Progress In Electromagnetics Research Letters, Vol. 3, 95-103, 2008.
doi:10.2528/PIERL08021503        Google Scholar

16. Yuan, H.-W., S.-X. Gong, P.-F. Zhang, and X. Wang, "Wide scanning phased array antenna using printed dipole antennas with parasitic element," Progress In Electromagnetics Research Letters, Vol. 2, 187-193, 2008.
doi:10.2528/PIERL08011602        Google Scholar

17. Abdelaziz, A. A., "Impro ving the performance of an antenna array by using radar absorbing cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503        Google Scholar

18. Cui, B., J. Zhang, and X.-W. Sun, "Single layer microstrip antenna arrays applied in millimeter-wave radar front-end," J . of Electromagn. Waves and Appl., Vol. 22, No. 1, 3-15, 2008.
doi:10.1163/156939308783122797        Google Scholar

19. He, Q.-Q., Q. Wang, and B.-Z. Wang, "Conformal array based on pattern reconfigurable antenna and its artificial neural model," J. of Electromagn. Waves and Appl., Vol. 22, No. 1, 99-110, 2008.        Google Scholar

20. Zhai, Y.-W., X.-W. Shi, and Y.-J. Zhao, "Optimized design of ideal and actual transformer based on improved micro-genetic algorithm," J. of Electromagn. Waves and Appl., Vol. 21, No. 13, 1761-1771, 2007.
doi:10.2528/PIERB07120403        Google Scholar

21. Rocca, P., L. Manica, and A. Massa, "An effective excitation matching method for the synthesis of optimal compromises between sum and difference patterns in planar arrays," Progress In Electromagnetics Research B, Vol. 3, 115-130, 2008.        Google Scholar