Vol. 14
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-04-22
Imaging Multipole Self-Potential Sources by 3D Probability Tomography
By
Progress In Electromagnetics Research B, Vol. 14, 311-339, 2009
Abstract
We present the theoretical development of the 3D multipole probability tomography applied to the electric Self-Potential (SP) method of geophysical exploration. We assume that an SP dataset can be thought of as the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct, without a priori assumptions, the most probable position and shape of the true SP buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. At first, a few synthetic cases with cubic bodies are examined in order to determine the resolution power of the new technique. Then, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..
Citation
Raffaele Alaia, Domenico Patella, and Paolo Mauriello, "Imaging Multipole Self-Potential Sources by 3D Probability Tomography," Progress In Electromagnetics Research B, Vol. 14, 311-339, 2009.
doi:10.2528/PIERB09021614
References

1. Patella, D., "Introduction to ground surface self-potential tomography," Geophys. Prosp., Vol. 45, 653-681, 1997.
doi:10.1046/j.1365-2478.1997.430277.x        Google Scholar

2. Patella, D., "Self-potential global tomography including topographic effects," Geophys. Prosp., Vol. 45, 843-863, 1997.
doi:10.1046/j.1365-2478.1997.570296.x        Google Scholar

3. Mauriello, P. and D. Patella, "Resistivity anomaly imaging by probability tomography," Geophys. Prosp., Vol. 47, 411-429, 1999.
doi:10.1046/j.1365-2478.1999.00137.x        Google Scholar

4. Mauriello, P. and D. Patella, "Principles of probability tomography for natural-source electromagnetic induction fields," Geophysics, Vol. 64, 1403-1417, 1999.
doi:10.1190/1.1444645        Google Scholar

5. Mauriello, P. and D. Patella, "Gravity probability tomography: A new tool for buried mass distribution imaging," Geophys. Prosp., Vol. 49, 1-12, 2001.
doi:10.1046/j.1365-2478.2001.00234.x        Google Scholar

6. Mauriello, P. and D. Patella, "Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses," Geophysics, Vol. 66, 1431-1437, 2001.
doi:10.1190/1.1487088        Google Scholar

7. Mauriello, P. and D. Patella, "Localization of magnetic sources underground by a probability tomography approach," Progress In Electromagtics Research M, Vol. 3, 27-56, 2008.
doi:10.2528/PIERM08050504        Google Scholar

8. Mauriello, P. and D. Patella, "Resistivity tensor probability tomography," Progress In Electromagtics Research B, Vol. 8, 129-146, 2008.
doi:10.2528/PIERB08051604        Google Scholar

9. Mauriello, P. and D. Patella, "Geoelectrical anomalies imaged by polar and dipolar probability tomography," Progress In Electromagtics Research, Vol. 87, 63-88, 2008.
doi:10.1088/1742-2132/5/1/007        Google Scholar

10. Alaia, R., D. Patella, and P. Mauriello, "Application of the geoelectrical 3D probability tomography in a test-site of the archaeological park of Pompei (Naples, Italy)," J. Geophys. Eng., Vol. 5, 67-76, 2008.
doi:10.1088/1742-2132/5/4/001        Google Scholar

11. Alaia, R., D. Patella, and P. Mauriello, "Imaging quadrupolar geophysical anomaly sources by 3D probability tomography. Application to near surface geoelectrical surveys," J. Geophys. Eng., Vol. 5, 359-370, 2008.
doi:10.1088/1742-2132/5/4/001        Google Scholar

12. Landau, L. D. and E. M. Lifsits, Elektrodinamika Splosnych Sred, Nauka, 1982.

13. Corwin, R. F., "The self-potential method for environmental and engineering applications," Geotechnical and Environmental, S. H.Ward (ed.), Chap. 1: Review and Tutorial, SEG, 127-146, Tulsa, 1990.
doi:10.1029/2004GL019554        Google Scholar

14. Saracco, G., P. Labazuy, and F. Moreau, "Localization of selfpotential sources in volcano-electric effect with complex continuous wavelet transform and electrical tomography methods for an active volcano," Geophys. Res. Lett., Vol. 31, 1-5, 2004.
doi:10.1016/S0377-0273(97)00066-8        Google Scholar

15. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi, "Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting," J. Volcanol. Geoth. Res., Vol. 82, 219-238, 1998.
doi:10.1016/S0377-0273(97)00066-8        Google Scholar

16. Iuliano, T., P. Mauriello, and D. Patella, "Looking inside Mount Vesuvius by potential fields integrated geophysical tomographies," J. Volcanol. Geoth. Res., Vol. 113, 363-378, 2002.
doi:10.1016/S0377-0273(01)00271-2        Google Scholar

17. Lapenna, V., D. Patella, and S. Piscitelli, "Tomographic analysis of self-potential data in a seismic area of southern Italy," Ann. Geofis., Vol. 43, 361-374, 2000.        Google Scholar

18. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagtics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202        Google Scholar