Vol. 14
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-04-03
Truncation Effect on Precursor Field Structure of Pulse Propagation in Dispersive Media
By
Progress In Electromagnetics Research B, Vol. 14, 65-86, 2009
Abstract
The dynamic evolutions of full Gaussian and particularly the truncated Gaussian pulses in dispersive Lorentz media are studied numerically in detail. The observed qualitative phenomena lead to revised interpretation regarding both Sommerfeld and Brillouin precursors. Neither strict Sommerfeld nor Brillouin precursor is present for the case of an incident full Gaussian pulse for any finite propagation distance. In addition, the Brillouin effect can be separated into a tail and a forerunner depending on the turn-on point of the initial pulse. Moreover, the essence of an artificial precursor is discussed, which deserves caution when handling the high dynamic range problems by numerical algorithm.
Citation
Jiaran Qi, and Ari Sihvola, "Truncation Effect on Precursor Field Structure of Pulse Propagation in Dispersive Media," Progress In Electromagnetics Research B, Vol. 14, 65-86, 2009.
doi:10.2528/PIERB09030205
References

1. Sommerfeld, A., "Uber die fortpflanzung des lichtes in dispergierenden medien," Ann. Phys., Vol. 44, 177-202, 1914.
doi:10.1002/andp.19143491002

2. Brillouin, L., "Uber die fortpflanzung des licht in dispergierenden medien," Ann. Phys., Vol. 44, 203-240, 1914.
doi:10.1002/andp.19143491003

3. Brillouin, L., Wave Propagation and Group Velocity, Academic, 1960.

4. Jackson, J. D., Classical Electrodynamics, 2nd Ed., John Wiley& Sons, Inc., 1975.

5. Oughstun, K. E. and G. C. Sherman, "Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium)," J. Opt. Soc. Am. B, Vol. 5, 817-848, 1988.
doi:10.1364/JOSAB.5.000817

6. Wyns, P., D. P. Foty, and K. E. Oughstun, "Numerical analysis of the precursor fields in linear dispersive pulse propagation," J. Opt. Soc. Am. A, Vol. 6, 1421-1429, 1989.
doi:10.1364/JOSAA.6.001421

7. Oughstun, K. E., P.Wyns, and D. Foty, "Numerical determination of the signal velocity in dispersive pulse propagation," J. Opt. Soc. Am. A, Vol. 6, 1430-1440, 1989.
doi:10.1364/JOSAA.6.001430

8. Solhaug, J. A., J. J. Stamnes, and K. E. Oughstun, "Diffraction of electromagnetic pulses in a single-resonance Lorentz medium," Pure Appl. Opt., Vol. 7, 1079-1101, 1998.
doi:10.1088/0963-9659/7/5/016

9. Balictsis, C. M. and K. E. Oughstun, "Uniform asymptotic description of ultrashort Gaussian-pulse propagation in a casual, dispersive dielectric," Phys. Rev. E, Vol. 47, 3645-3669, 1993.
doi:10.1103/PhysRevE.47.3645

10. Oughstun, K. E. and C. M. Balictsis, "Gaussian pulse propagation in a dispersive, absorbing dielectric," Phys. Rev. Lett., Vol. 77, 2210-2213, 1996.
doi:10.1103/PhysRevLett.77.2210

11. Balictsis, C. M. and K. E. Oughstun, "Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear, casually dispersive medium," Phys. Rev. E, Vol. 55, 1910-1921, 1997.
doi:10.1103/PhysRevE.55.1910

12. Ni, X. and R. R. Alfano, "Brillouin precursor propagation in the THz region in Lorentz media," Optics Express, Vol. 14, 4188-4194, 2006.
doi:10.1364/OE.14.004188

13. Oughstun, K. E., "Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 53, 1582-1590, 2005.
doi:10.1109/TAP.2005.846452

14. Beezley, R. S. and R. J. Krueger, "An electromagnetic inverse problem for dispersive media," J. Math. Phys., Vol. 26, 317-325, 1985..
doi:10.1063/1.526661

15. Kristensson, G., "Direct and inverse scattering problems in dispersive media — Green’s functions and invariant imbedding techniques," Methoden und Verfahren der Mathe-matischen Physik, Vol. 37, 105-119, 1991.

16. Karlsson, A., "Wave propagators for transient waves in onedimensional media ," Wave Motion, Vol. 24, No. 1, 85-99, 1996.
doi:10.1016/0165-2125(96)00008-X

17. Cossmann, S. M. and E. J. Rothwell, "Transient reflection of plane waves from a Lorentz medium half space," J. of Electromagn. Waves and Appl., Vol. 21, 1289-1302, 2007.
doi:10.1163/156939307783239456

18. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003

19. Bigelow, M. S., N. N. Lepeshkin, H. Shin, and R. W. Boyd, "Propagation of smooth and discontinuous pulses through materials with very large or very small group velocities," Journal of Physics: Condensed Matter, Vol. 18, 3117-3126, 2006.
doi:10.1088/0953-8984/18/11/017

20. Dvorak, S. L. and R. W. Ziolkowski, "Hybrid analytical-numerical approach for modeling transient wave propagation in Lorentz medium," J. Opt. Soc. Am. A, Vol. 15, 1241-1254, 1998.
doi:10.1364/JOSAA.15.001241

21. Ziolkowski, R. W. and J. B. Judkins, "Propagation characteristics of ultrawide-bandwidth pulsed Gaussian beams," J. Opt. Soc. Am. A, Vol. 9, 2021-2030, 1992.
doi:10.1364/JOSAA.9.002021

22. Ziolkowski, R. W., "Superluminal transmission of information through an electro-magnetic metamaterial," Phys. Rev. E, Vol. 63, 1-13, 2001.

23. Ziolkowski, R. W., "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 1-15, 2001.

24. Sihvola, A. H., Electromagnetic Mixing Formulas and Application, IEE, 1999.

25. Pendry, J. B., A. J. Holden, D. C. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

26. Robert, P., Electrical and Magnetic Properties of Materials, Artech House, 1988.