Vol. 14
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-04-28
Analysis and Design of an Ultra-Thin Metamaterial Absorber
By
Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009
Abstract
This paper presents a class of ultra-thin metamaterial absorbers, which consists of periodic microstrip lines on top of a planar lossy substrate backed by a conducting metallic plate. A highly efficient full-wave analysis method was developed to solve the electromagnetic response of the absorbers. The in uence of electromagnetic properties of the substrate and physical dimensions of the microstrip lines were analyzed. Genetic algorithm was used to optimize the absorption bandwidth of the absorbers. Effective permeability and permittivity of the absorbers were retrieved to shed a new light on the absorption mechanism of the absorbers and to explain their ultimate bandwidth limit. It was found that the ultimate bandwidth limit of the metamaterial absorbers is the same as that of normal absorbers.
Citation
Ruifeng Huang, Zheng-Wen Li, Ling Bing Kong, Lie Liu, and Serguei Matitsine, "Analysis and Design of an Ultra-Thin Metamaterial Absorber," Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIERB09040902
References

1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773

2. Pendry, J. B, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1126/science.1058847

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 2001.
doi:10.1126/science.1058847

4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966

5. Grbic, A. and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Physical Review Letters, Vol. 92, No. 11, Mar. 2004.
doi:10.1103/PhysRevLett.92.117403

6. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, Jun. 2006.
doi:10.1126/science.1125907

7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 2006.
doi:10.1126/science.1133628

8. Chen, H. S., B. I.Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Physical Review Letters, Vol. 99, No. 6, Aug. 2007.
doi:10.1103/PhysRevLett.99.063903

9. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, May 2002.
doi:10.1103/PhysRevB.65.195104

10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, May 2008.
doi:10.1103/PhysRevLett.100.207402

11. Mejdoubi, A. and C. Brosseau, "Reectance and absorbance of all-dielectric metamaterial composites with fractal boundaries: A numerical investigation," Journal of Applied Physics, Vol. 105, No. 2, Jan. 2009.
doi:10.1063/1.3072692

12. Rao, X. S., S. Matitsine, and H. Lim, "Ultra-thin radar absorbing structures based on short strip pairs," ICMAT 2007 Proceedings of Symposium P (Electromagnetic Materials), 191-194, Singapore, 2007.

13. Zhou, J. F., L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Physical Review B, Vol. 73, No. 4, Jan. 2006.

14. Lam, V. D., J. B. Kim, S. J. Lee, and Y. P. Lee, "Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium," Optics Express, Vol. 15, No. 25, 16651-16656, Dec. 2007.
doi:10.1364/OE.15.016651

15. Hibbins, A. P., J. R. Sambles, C. R. Lawrence, and J. R. Brown, "Squeezing millimeter waves into microns," Physical Review Letters, Vol. 92, No. 14, Apr. 2004.
doi:10.1103/PhysRevLett.92.143904

16. Wexler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 15, No. 9, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521

17. Huang, R. F. and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103

18. Eleftheriades, G. V., A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, "Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 10, 1896-1903, 1994.
doi:10.1109/22.320771

19. Thabet, R., M. L. Riabi, and M. Belmeguenai, "Rigorous design and efficient optimization of quarter-wave transformers in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 68, 15-33, 2007.

20. Dagli, N., "Mode matching technique as applied to open guided-wave structures," Progress In Electromagnetics Research, Vol. 10, 75-121, 1995.

21. Johnson, J. M. and Y. RahmatSamii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-25, Aug. 1997.
doi:10.1109/74.632992

22. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, Mar. 1997.
doi:10.1109/8.558650

23. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, Apr. 1995.
doi:10.1109/74.382334

24. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses ," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

25. Kern, D. J. and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave and Optical Technology Letters, Vol. 38, No. 1, 61-64, Jul. 2003.
doi:10.1002/mop.10971

26. Mosallaei, H. and K. Sarabandi, "A one-layer ultra-thin metasurface absorber," IEEE Antennas and Propagation Society International Symposium 2005, 615-618, 2005.

27. Zhou, J. F., E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Optics Letters, Vol. 31, No. 24, 3620-3622, Dec. 2006.
doi:10.1364/OL.31.003620

28. Chen, X. D., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, Jul. 2004.

29. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2224-2230, Oct. 2007.
doi:10.1109/TMTT.2007.906473

30. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., Artech House, Boston, 1993.

31. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E, Vol. 68, No. 6, Dec. 2003.
doi:10.1103/PhysRevE.68.065602

32. Koschny, T., P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Physical Review B, Vol. 71, No. 24, Jun. 2005.
doi:10.1103/PhysRevB.71.245105

33. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 8, 1230-1234, Aug. 2000.
doi:10.1109/8.884491