1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773
2. Pendry, J. B, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1126/science.1058847
3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 2001.
doi:10.1126/science.1058847
4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966
5. Grbic, A. and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Physical Review Letters, Vol. 92, No. 11, Mar. 2004.
doi:10.1103/PhysRevLett.92.117403
6. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, Jun. 2006.
doi:10.1126/science.1125907
7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 2006.
doi:10.1126/science.1133628
8. Chen, H. S., B. I.Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Physical Review Letters, Vol. 99, No. 6, Aug. 2007.
doi:10.1103/PhysRevLett.99.063903
9. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, May 2002.
doi:10.1103/PhysRevB.65.195104
10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, May 2008.
doi:10.1103/PhysRevLett.100.207402
11. Mejdoubi, A. and C. Brosseau, "Reectance and absorbance of all-dielectric metamaterial composites with fractal boundaries: A numerical investigation," Journal of Applied Physics, Vol. 105, No. 2, Jan. 2009.
doi:10.1063/1.3072692
12. Rao, X. S., S. Matitsine, and H. Lim, "Ultra-thin radar absorbing structures based on short strip pairs," ICMAT 2007 Proceedings of Symposium P (Electromagnetic Materials), 191-194, Singapore, 2007.
13. Zhou, J. F., L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Physical Review B, Vol. 73, No. 4, Jan. 2006.
14. Lam, V. D., J. B. Kim, S. J. Lee, and Y. P. Lee, "Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium," Optics Express, Vol. 15, No. 25, 16651-16656, Dec. 2007.
doi:10.1364/OE.15.016651
15. Hibbins, A. P., J. R. Sambles, C. R. Lawrence, and J. R. Brown, "Squeezing millimeter waves into microns," Physical Review Letters, Vol. 92, No. 14, Apr. 2004.
doi:10.1103/PhysRevLett.92.143904
16. Wexler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 15, No. 9, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521
17. Huang, R. F. and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103
18. Eleftheriades, G. V., A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, "Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 10, 1896-1903, 1994.
doi:10.1109/22.320771
19. Thabet, R., M. L. Riabi, and M. Belmeguenai, "Rigorous design and efficient optimization of quarter-wave transformers in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 68, 15-33, 2007.
20. Dagli, N., "Mode matching technique as applied to open guided-wave structures," Progress In Electromagnetics Research, Vol. 10, 75-121, 1995.
21. Johnson, J. M. and Y. RahmatSamii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-25, Aug. 1997.
doi:10.1109/74.632992
22. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, Mar. 1997.
doi:10.1109/8.558650
23. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, Apr. 1995.
doi:10.1109/74.382334
24. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses ," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806
25. Kern, D. J. and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave and Optical Technology Letters, Vol. 38, No. 1, 61-64, Jul. 2003.
doi:10.1002/mop.10971
26. Mosallaei, H. and K. Sarabandi, "A one-layer ultra-thin metasurface absorber," IEEE Antennas and Propagation Society International Symposium 2005, 615-618, 2005.
27. Zhou, J. F., E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Optics Letters, Vol. 31, No. 24, 3620-3622, Dec. 2006.
doi:10.1364/OL.31.003620
28. Chen, X. D., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, Jul. 2004.
29. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2224-2230, Oct. 2007.
doi:10.1109/TMTT.2007.906473
30. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., Artech House, 1993.
31. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E, Vol. 68, No. 6, Dec. 2003.
doi:10.1103/PhysRevE.68.065602
32. Koschny, T., P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Physical Review B, Vol. 71, No. 24, Jun. 2005.
doi:10.1103/PhysRevB.71.245105
33. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 8, 1230-1234, Aug. 2000.
doi:10.1109/8.884491