Vol. 16
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-02
Design of an Ultra-Wideband, Low-Noise Amplifier Using a Single Transistor: A Typical Application Example
By
Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009
Abstract
In this work, a design method of an Ultra-Wideband (UWB), low-noise amplifier (LNA) is proposed exerting the performance limitations of a single high-quality discrete transistor. For this purpose, the compatible (Noise F, Input VSWR Vi, Gain GT) triplets and their (ZS, ZL) terminations of a microwave transistor are exploited for the feasible design target space with the minimum noise Fmin(ƒ), maximum gain GTmax(ƒ) and a low input VSWR Vi over the available bandwidth B. This multi-objective design procedure is reduced into syntheses of the Darlington equivalences of the ZSopt(ƒ), ZLmax(ƒ) terminations with the Unit-elements and short-circuited stubs in the T-, L-, Π- configurations and Particle Swarm Intelligence is successfully implemented as a comparatively simple and efficient optimization tool into both verification of the design target space and the design process of the input and output matching circuits. A typical design example is given with its challenging performance in the simple Π- and Π-configurations realizable by the microstrip line technology. Furthermore the performances of the synthesized amplifiers are compared using an analysis programme in MATLAB code and a microwave system simulator and verified to agree with each other.
Citation
Salih Demirel, Filiz Gunes, and Ufuk Ozkaya, "Design of an Ultra-Wideband, Low-Noise Amplifier Using a Single Transistor: A Typical Application Example," Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009.
doi:10.2528/PIERB09062302
References

1. Mimino, Y., M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki, and S. Kuroda, "High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication," IEEE Radio Frequency Integrated Circuits Symp., 209-212, 2000.        Google Scholar

2. Trotta, S., H. Knapp, K. Aufinger, T. F. Meister, J. Böck, B. Dehlink, W. Simbürger, and A. L. Scholtz, "An 84 GHz bandwidth and 20 dB gain broadband amplifier in SiGe bipolar technology," IEEE J. Solid-state Circuits, Vol. 42, No. 10, 2099-2106, Oct. 2007.
doi:10.1109/JSSC.2007.905227        Google Scholar

3. Li, Q. and Y. P. Zhang, "A 1.5V 2-9.6 GHz inductorless low-noise amplifier in 0.13 μm CMOS," IEEE Trans. on Microwave Theory and Techniques, Vol. 55, No. 10, 2015-2024, Oct. 2007.
doi:10.1109/TMTT.2007.905495        Google Scholar

4. Gunes, F., M. Gunes, and M. Fidan, "Performance characterisation of a microwave transistor," IEE Proceedings - Circuits, Devices and Systems, Vol. 141, No. 5, 337-344, Oct. 1994.
doi:10.1049/ip-cds:19941110        Google Scholar

5. Gunes, F. and B. A. Cetiner, "A novel smith chart formulation of performance characterisation for a microwave transistor," IEE Proceedings - Circuits Devices and Systems, Vol. 145, No. 6, 419-428, 1998.
doi:10.1049/ip-cds:19982389        Google Scholar

6. Gunes, F., H. Torpi, and F. Gurgen, "A multidimensional signal-noise neural network model for microwave transistors," IEE Proceedings - Circuits Devices and Systems, Vol. 145, No. 2, 111-117, Apr. 1998.
doi:10.1049/ip-cds:19981712        Google Scholar

7. Gunes, F., N. Turker, and F. Gurgen, "Signal-noise support vector model of a microwave transistor," Int. J. RF and Microwave CAE, Vol. 17, No. 4, 404-415, Jul. 2007.
doi:10.1002/mmce.20239        Google Scholar

8. Li, Q. and Y. P. Zhang, "Alternative approach to low-noise amplifier design for ultra-wideband applications," Int. J. RF and Microwave CAE, Vol. 17, No. 2, 153-159, Mar. 2007.
doi:10.1002/mmce.20209        Google Scholar

9. Gunes, F. and Y. Cengiz, "Optimization of a microwave amplifier using neural performance data sheets with genetic algorithms," Lecture Notes in Computer Science, 630-637, 2003.        Google Scholar

10. Cengiz, Y., H. Goksu, and F. Gunes, "Design of a broadband microwave amplifier using neural performance data sheets and very fast simulated reannealing," Lecture Notes in Computer Science, Vol. 6, No. 2, 815-820, 2006.
doi:10.1007/11760191_119        Google Scholar

11. Gunes, F. and S. Demirel, "Gain gradients applied to optimization of distributed-parameter matching circuits for a microwave transistor subject to its potential performance," Int. J. RF and Microwave CAE, Vol. 18, 99-111, 2008.
doi:10.1002/mmce.20254        Google Scholar

12. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806        Google Scholar

13. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605        Google Scholar

14. Chamaani, S., S. A. Mirta, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702        Google Scholar

15. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904        Google Scholar

16. Lu, Z.-B., A. Zhang, and X.-Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004        Google Scholar

17. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904        Google Scholar

18. Hosseini, S. A. and Z. Atlasbaf, "Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous ant colony optimization (ACO) method," Progress In Electromagnetics Research, Vol. 79, 321-337, 2008.
doi:10.2528/PIER07102901        Google Scholar

19. Ghaffari-Miab, M., A. Farmahini-Farahani, R. Faraji-Dana, and C. Lucas, "An efficient hybrid swarm intelligence-gradient optimization method for complex time Green's functions of multilayer media," Progress In Electromagnetics Research, Vol. 77, 181-192, 2007.
doi:10.2528/PIER07072504        Google Scholar

20. Li, W.-T., X.-W. Shi, L. Xu, and Y.-Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07121503        Google Scholar

21. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603        Google Scholar

22. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE Conf. Neural Networks IV, 1995.        Google Scholar

23. www.agilent.com.