1. Mimino, Y., M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki, and S. Kuroda, "High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication," IEEE Radio Frequency Integrated Circuits Symp., 209-212, 2000. Google Scholar
2. Trotta, S., H. Knapp, K. Aufinger, T. F. Meister, J. Böck, B. Dehlink, W. Simbürger, and A. L. Scholtz, "An 84 GHz bandwidth and 20 dB gain broadband amplifier in SiGe bipolar technology," IEEE J. Solid-state Circuits, Vol. 42, No. 10, 2099-2106, Oct. 2007.
doi:10.1109/JSSC.2007.905227 Google Scholar
3. Li, Q. and Y. P. Zhang, "A 1.5V 2-9.6 GHz inductorless low-noise amplifier in 0.13 μm CMOS," IEEE Trans. on Microwave Theory and Techniques, Vol. 55, No. 10, 2015-2024, Oct. 2007.
doi:10.1109/TMTT.2007.905495 Google Scholar
4. Gunes, F., M. Gunes, and M. Fidan, "Performance characterisation of a microwave transistor," IEE Proceedings - Circuits, Devices and Systems, Vol. 141, No. 5, 337-344, Oct. 1994.
doi:10.1049/ip-cds:19941110 Google Scholar
5. Gunes, F. and B. A. Cetiner, "A novel smith chart formulation of performance characterisation for a microwave transistor," IEE Proceedings - Circuits Devices and Systems, Vol. 145, No. 6, 419-428, 1998.
doi:10.1049/ip-cds:19982389 Google Scholar
6. Gunes, F., H. Torpi, and F. Gurgen, "A multidimensional signal-noise neural network model for microwave transistors," IEE Proceedings - Circuits Devices and Systems, Vol. 145, No. 2, 111-117, Apr. 1998.
doi:10.1049/ip-cds:19981712 Google Scholar
7. Gunes, F., N. Turker, and F. Gurgen, "Signal-noise support vector model of a microwave transistor," Int. J. RF and Microwave CAE, Vol. 17, No. 4, 404-415, Jul. 2007.
doi:10.1002/mmce.20239 Google Scholar
8. Li, Q. and Y. P. Zhang, "Alternative approach to low-noise amplifier design for ultra-wideband applications," Int. J. RF and Microwave CAE, Vol. 17, No. 2, 153-159, Mar. 2007.
doi:10.1002/mmce.20209 Google Scholar
9. Gunes, F. and Y. Cengiz, "Optimization of a microwave amplifier using neural performance data sheets with genetic algorithms," Lecture Notes in Computer Science, 630-637, 2003. Google Scholar
10. Cengiz, Y., H. Goksu, and F. Gunes, "Design of a broadband microwave amplifier using neural performance data sheets and very fast simulated reannealing," Lecture Notes in Computer Science, Vol. 6, No. 2, 815-820, 2006.
doi:10.1007/11760191_119 Google Scholar
11. Gunes, F. and S. Demirel, "Gain gradients applied to optimization of distributed-parameter matching circuits for a microwave transistor subject to its potential performance," Int. J. RF and Microwave CAE, Vol. 18, 99-111, 2008.
doi:10.1002/mmce.20254 Google Scholar
12. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806 Google Scholar
13. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605 Google Scholar
14. Chamaani, S., S. A. Mirta, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702 Google Scholar
15. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904 Google Scholar
16. Lu, Z.-B., A. Zhang, and X.-Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004 Google Scholar
17. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904 Google Scholar
18. Hosseini, S. A. and Z. Atlasbaf, "Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous ant colony optimization (ACO) method," Progress In Electromagnetics Research, Vol. 79, 321-337, 2008.
doi:10.2528/PIER07102901 Google Scholar
19. Ghaffari-Miab, M., A. Farmahini-Farahani, R. Faraji-Dana, and C. Lucas, "An efficient hybrid swarm intelligence-gradient optimization method for complex time Green's functions of multilayer media," Progress In Electromagnetics Research, Vol. 77, 181-192, 2007.
doi:10.2528/PIER07072504 Google Scholar
20. Li, W.-T., X.-W. Shi, L. Xu, and Y.-Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07121503 Google Scholar
21. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603 Google Scholar
22. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE Conf. Neural Networks IV, 1995. Google Scholar
23. www.agilent.com.