1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbid-den frequency band ," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, 1999. Google Scholar
2. Yan, D.-B., Q. Gao, Y.-Q. Fu, G.-H. Zhang, and N.-C. Yuan, "Novel improvement of broad band AMC structure," Chinese Journal of Radio Science, Vol. 20, 586-589, 2005. Google Scholar
3. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structure," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007. Google Scholar
4. Fu, Y. and N. Yuan, "Accurate analysis of electromagnetic bandgap materials using moment methods," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 629-653, 2005. Google Scholar
5. Li, B., L. Li, and C.-H. Liang, "The rectangular waveguide board wall slot array antenna with EBG structure," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1807-1815, 2005. Google Scholar
6. Yang, F., V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, "Enhancement of printed dipole antennas characteristics using semi-EBG ground plane," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 993-1006, 2006. Google Scholar
7. Zhang, L.-J., C.-H. Liang, L. Liang, and L. Chen, "A novel design approach for dual band electromagnetic band-gap structure," Progress In Electromagnetics Research M, Vol. 4, 81-91, 2008. Google Scholar
8. Yu, C.-C., M.-H. Haung, Y.-T. Chang, L.-K. Lin, and T.-H. Weng, "A novel electromagnetic bandgap (EBG) structure for electromagnetic compatibility (EMC) application ," PIERS Proceedings, 581-584, Beijing, China, March 23-27, 2009.
9. Bao, X. L. and M. J. Ammann, "Design of compact multib and EBG structure," European Conference on Antennas and Propagation, 2007. Google Scholar
10. Chen, G. Y., J. S. Sun, and K. L. Wu, "Dual-band 1-D PBG," IEEE TENCON, 2007. Google Scholar
11. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microwave Opt. Technol. Lett., Vol. 50, 2167-2170, 2008. Google Scholar
12. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits ," IEEE Trans. Microwave Theory Tech., Vol. 53, 183-190, 2005. Google Scholar
13. Yang, N., Z.-N. Chen, Y.-Y. Wang, and M. Y. W. Chia, "A two layer compact electromagnetic bandgap (EBG) structure and its applications in microstrip filter design ," Microwave Opt. Technol. Lett., Vol. 37, 62-64, 2003. Google Scholar
14. Horii, Y., "A compact band elimination filter composed of a mushroom resonator embedded in a microstrip line substrate," 2005 Asian Pacific Microwave Conference, 2005.
15. Lee, D. H., J. H. Kim, J. H. Jang, and W. S. Park, "Dual-frequency dual-polarization antenna of high isolation with embedded mushroom-like EBG cells ," Microwave Opt. Technol. Lett., Vol. 49, 1764-1768, 2007. Google Scholar
16. Wong, K.-L., Compact and Broadband Microstrip Antennas, Wiley, New York, 2002.
17. Yang, F. and Y. Rahmat-Samii, "Electromagnetic Band Gap Structures in Antenna Engineering," Cambridge University Press, 2009. Google Scholar
18. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Ed., Chap. 14, John Willy & Sons, 1997.
19. Ghorbani, A., R. A. Abd-Alhameed, N. J. McEwan, and D. Zhou, "An approach for calculating the limiting bandwidth reflection coe±cient product for microstrip patch antennas," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 4, April 2006. Google Scholar