Vol. 21
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-05-24
Flexible Hollow Waveguide with Two Bendings for Small Values of Step Angles, and Applications
By
Progress In Electromagnetics Research B, Vol. 21, 347-383, 2010
Abstract
This paper presents an improved approach for the propagation of electromagnetic (EM) fields in the case of the exible hollow waveguide that consists of two bendings in the same direction. In this case, the objective is to develop a mode model for infrared (IR) wave propagation along the exible hollow waveguide, in order to provide a numerical tool for the calculation of the output fields, output power density and output power transmission. The main steps of the method for the two bendings will introduced in the derivation, in detail, for small values of step angles. The derivation for the first section and the second section of the waveguide with the two bendings is based on Maxwell's equations. The separation of variables is obtained by using the orthogonal-relations. The longitudinal components of the fields are developed into the Fourier-Bessel series. The transverse components of the fields are expressed as functions of the longitudinal components in the Laplace plane and are obtained by using the inverse Laplace transform by the residue method. This model can be a useful tool in all the cases of the hollow toroidal waveguides, e.g., in medical and industrial regimes.
Citation
Zion Menachem, "Flexible Hollow Waveguide with Two Bendings for Small Values of Step Angles, and Applications," Progress In Electromagnetics Research B, Vol. 21, 347-383, 2010.
doi:10.2528/PIERB10012402
References

1. Harrington, J. A. and Y. Matsuura, "Review of hollow waveguide technology," Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, and D. M. Harris (eds.), SPIE, Vol. 2396, 4-14, 1995.

2. Harrington, J. A., "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics, Vol. 19, 211-228, 2000.
doi:10.1080/01468030050058794

3. Marcatili, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., Vol. 43, 1783-1809, 1964.

4. Marhic, M. E., "Mode-coupling analysis of bending losses in IR metallic waveguides," Appl. Opt., Vol. 20, 3436-3441, 1981.
doi:10.1364/AO.20.003436

5. Miyagi, M., K. Harada, and S. Kawakami, "Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature," IEEE Trans. Microwave Theory Tech., Vol. 32, 513-521, 1984.
doi:10.1109/TMTT.1984.1132715

6. Croitoru, N., E. Goldenberg, D. Mendlovic, S. Ruschin, and N. Shamir, "Infrared chalcogenide tube waveguides," SPIE, Vol. 618, 140-145, 1986.

7. Melloni, A., F. Carniel, R. Costa, and M. Martinelli, "Determination of bend mode characteristics in dielectric waveguides ," J. Lightwave Technol., Vol. 19, 571-577, 2001.
doi:10.1109/50.920856

8. Bienstman, P., M. Roelens, M. Vanwolleghem, and R. Baets, "Calculation of bending losses in dielectric waveguides using eigenmode expansion and perfectly matched layers ," IEEE Photon. Technol. Lett., Vol. 14, 164-166, 2002.
doi:10.1109/68.980493

9. Mendlovic, D., E. Goldenberg, S. Ruschin, J. Dror, and N. Croitoru, "Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides," Appl. Opt., Vol. 28, 708-712, 1989.
doi:10.1364/AO.28.000708

10. Morhaim, O., D. Mendlovic, I. Gannot, J. Dror, and N. Croitoru, "Ray model for transmission of infrared radiation through multibent cylindrical waveguides," Opt. Eng., Vol. 30, 1886-1891, 1991.
doi:10.1117/12.56016

11. Kark, K. W., "Perturbation analysis of electromagnetic eigenmodes in toroidal waveguides," IEEE Trans. Microwave Theory Tech., Vol. 39, 631-637, 1991.
doi:10.1109/22.76425

12. Lewin, L., D. C. Chang, and E. F. Kuester, Electromagnetic Waves and Curved Structures, Ch. 6, 58-68, Peter Peregrinus Ltd., London, 1977.

13. Menachem, Z., "Wave propagation in a curved waveguide with arbitrary dielectric transverse profiles," Progress In Electromagnetics Research, Vol. 42, 173-192, 2003.
doi:10.2528/PIER03012303

14. Menachem, Z., N. Croitoru, and J. Aboudi, "Improved mode model for infrared wave propagation in a toroidal dielectric waveguide and applications," Opt. Eng., Vol. 41, 2169-2180, 2002.
doi:10.1117/1.1496490

15. Menachem, Z. and M. Mond, "Infrared wave propagation in a helical waveguide with inhomogeneous cross section and applications," Progress In Electromagnetics Research, Vol. 61, 159-192, 2006.
doi:10.2528/PIER06020205

16. Menachem, Z. and M. Haridim, "Propagation in a helical waveguide with inhomogeneous dielectric profiles in rectangular cross section," Progress In Electromagnetics Research B, Vol. 16, 155-188, 2009.
doi:10.2528/PIERB09022202

17. Collin, R. E., Foundation for Microwave Engineering, McGraw-Hill, New York, 1996.

18. Yariv, A., "Optical Electronics," Holt-Saunders Int. Editions, 1985.

19. Baden Fuller, A. J., Microwaves, Ch. 5, 118-120, A. Wheaton and Co. Ltd, Pergamon Press, Oxford, 1969.

20. Olver, F. W. J., "Royal Society Mathematical Tables, Zeros and Associated Values," 2-30, University Press Cambridge, 1960.

21. Jahnke, E. and F. Emde, "Tables of Functions with Formulae and Curves," Ch. 8, 166, Dover publications, New York, 1945.

22., The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, Oxford, UK.

23. Croitoru, N., A. Inberg, M. Oksman, M. Ben-David, "Hollow silica, metal and plastic waveguides for hard tissue medical applications," SPIE, Vol. 2977, 30-35, 1997.
doi:10.1117/12.271023