Vol. 24
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-16
Average Intensity and Spreading of Partially Coherent Four-Petal Gaussian Beams in Turbulent Atmosphere
By
Progress In Electromagnetics Research B, Vol. 24, 241-262, 2010
Abstract
The concept of partially coherent four-petal Gaussian (PCFPG) beam is introduced and described in analytical forms. Based on the Huygens-Fresnel integral formula, average intensity and beam spreading in turbulent atmosphere are derived in analytical expressions. Effects of beam parameters and atmospheric structure constant on intensity distributions and effective beam sizes are investigated in detail, respectively. Results show that PCFPG beams carrying larger coherence lengths or higher beam orders would be less affected by turbulence. It is also indicated that, when the propagation distance increases, the PCFPG beam would convert into the Gauss-like profile sooner or later, but this degradation can be reduced by modulating beam parameters. Results in this paper may provide potential applications in free-space optical communications.
Citation
Jia Li, Yanru Chen, Shixue Xu, Yongqing Wang, Muchun Zhou, Qi Zhao, Yu Xin, and Feinan Chen, "Average Intensity and Spreading of Partially Coherent Four-Petal Gaussian Beams in Turbulent Atmosphere," Progress In Electromagnetics Research B, Vol. 24, 241-262, 2010.
doi:10.2528/PIERB10062306
References

1. Andrews, L. C. and R. L. Phillips, Laser Beam Propagation Through Random Media, SPIE Press, 1998.

2. Gbur, G. and E. Wolf, "Spreading of partially coherent beams in random media," J. Opt. Soc. Am. A, Vol. 19, 1592-1598, 2002.
doi:10.1364/JOSAA.19.001592        Google Scholar

3. Gbur, G. and R. K. Tyson, "Vortex beam propagation through atmospheric turbulence and topological charge conservation," J. Opt. Soc. Am. A, Vol. 25, 225-230, 2008.
doi:10.1364/JOSAA.25.000225        Google Scholar

4. Azana, J., "Lensless imaging of an arbitrary object," Opt. Lett., Vol. 28, 501-503, 2003.
doi:10.1364/OL.28.000501        Google Scholar

5. Ferri, F., D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light ," Phys. Rev. Lett., Vol. 94, 183602, 2005.
doi:10.1103/PhysRevLett.94.183602        Google Scholar

6. Cheng, J., "Ghost imaging through turbulent atmosphere," Opt. Express, Vol. 17, 7916-7921, 2009.
doi:10.1364/OE.17.007916        Google Scholar

7. Ricklin, J. C. and F. M. Davidson, "Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communications," J. Opt. Soc. Am. A, Vol. 19, 1794-1802, 2002.
doi:10.1364/JOSAA.19.001794        Google Scholar

8. Chen, B., Z. Chen, and J. Pu, "Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere," Opt. Laser. Technol., Vol. 40, 820-827, 2008.
doi:10.1016/j.optlastec.2007.11.011        Google Scholar

9. Qu, J., Y. Zhong, Z. Cui, and Y. Cai, "Elegant Laguerre-Gaussian beam in a turbulent atmosphere," Opt. Commun., Vol. 283, 2772-2781, 2010.
doi:10.1016/j.optcom.2010.03.022        Google Scholar

10. Eyyuboglu, H. T., Y. Baykal, and E. Sermutlu, "Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere," Opt. Commun., Vol. 265, 399-405, 2006.
doi:10.1016/j.optcom.2006.03.071        Google Scholar

11. Ji, X., E. Zhang, and B. Lü, "Superimposed partially coherent beams propagating through atmospheric turbulence," J. Opt. Soc. Am. B, Vol. 25, 825-833, 2008.
doi:10.1364/JOSAB.25.000825        Google Scholar

12. Manez, R. J. and J. C. Gutiérrez, "Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere," Opt. Express, Vol. 15, 16328-16341, 2007.
doi:10.1364/OE.15.016328        Google Scholar

13. Razzaghi, D., F. Hajiesmaeilbaigi, and M. Alavinejad, "Turbulence induced changes in spectrum and time shape of fully coherent Gaussian pulses propagating in atmosphere," Opt. Commun., Vol. 283, 2318-2323, 2010.
doi:10.1016/j.optcom.2010.01.048        Google Scholar

14. Eyyuboglu, H. T., Y. Baykal, and X. Ji, "Radius of curvature variations for annular, dark hollow and flat topped beams in turbulence," Appl. Phys. B, Vol. 99, No. 4, 801-807, 2010.
doi:10.1007/s00340-010-3955-4        Google Scholar

15. Shchepakina, E. and O. Korotkova, "Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence," Opt. Express, Vol. 18, 10650-10658, 2010.
doi:10.1364/OE.18.010650        Google Scholar

16. Chen, W., J. W. Haus, and Q. Zhan, "Propagation of scalar and vector vortex beams through turbulent atmosphere," Proc. of SPIE, Vol. 7200, 720004, 2009.
doi:10.1117/12.809138        Google Scholar

17. Wang, F., Y. Cai, and O. Korotkova, "Partially coherent standard and elegant Laguerre-Gaussian beams of all orders," Opt. Express, Vol. 17, 22366-22379, 2009.
doi:10.1364/OE.17.022366        Google Scholar

18. Shirai, T., A. Dogariu, and E. Wolf, "Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence," Opt. Lett., Vol. 28, 610-612, 2003.
doi:10.1364/OL.28.000610        Google Scholar

19. Korotkova, O., M. Salem, and E. Wolf, "The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence," Opt. Commun., Vol. 233, 225-230, 2004.
doi:10.1016/j.optcom.2004.01.005        Google Scholar

20. Korotkova, O., "Control of the intensity fluctuations of random electromagnetic beam on propagation in weak turbulent atmosphere," Proc. of SPIE, Vol. 6105, 61050, 2006.
doi:10.1117/12.644254        Google Scholar

21. Cai, Y. and S. He, "Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in turbulent atmosphere," Appl. Phys. Lett., Vol. 89, 041117, 2006.
doi:10.1063/1.2236463        Google Scholar

22. Arpali, C., C. Yazicioglu, H. T. Eyyuboglu, S. A. Arpali, and Y. Baykal, "Simulator for general-type beam propagation in turbulent atmosphere," Opt. Express, Vol. 14, 8918-8928, 2006.
doi:10.1364/OE.14.008918        Google Scholar

23. Eyyuboglu, H. T., "Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere," J. Opt. Soc. Am. A, Vol. 22, 1527-1535, 2005.
doi:10.1364/JOSAA.22.001527        Google Scholar

24. Ji, X., X. Chen, and B. Lu, "Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 25, 21-28, 2008.
doi:10.1364/JOSAA.25.000021        Google Scholar

25. Yuan, Y., Y. Cai, J. Qu, H. T. Eyyuboglu, and Y. Baykal, "Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent atmosphere," Opt. Express, Vol. 17, 11130-11139, 2009.
doi:10.1364/OE.17.011130        Google Scholar

26. Li, J., Y. Chen, Q. Zhao, and M. Zhou, "Effect of astigmatism on states of polarization of aberrant stochastic electromagnetic beams in turbulent atmosphere," J. Opt. Soc. Am. A, Vol. 26, 2121-2127, 2009.
doi:10.1364/JOSAA.26.002121        Google Scholar

27. Chu, X., Z. Liu, and Y. Wu, "Propagation of a general multi-Gaussian beam in turbulent atmosphere in a slant path," J. Opt. Soc. Am. A, Vol. 25, 74-79, 2008.
doi:10.1364/JOSAA.25.000074        Google Scholar

28. Zhou, P., Z. Liu, X. Xu, and X. Chu, "Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere," Opt. & Laser. Eng., Vol. 47, 1254-1258, 2009.
doi:10.1016/j.optlaseng.2009.05.008        Google Scholar

29. Dan, Y. and B. Zhang, "Second moments of partially coherent beams in atmospheric turbulence," Opt. Lett., Vol. 34, 563-565, 2009.
doi:10.1364/OL.34.000563        Google Scholar

30. Zhou, G. and X. Chu, "Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere," Opt. Express, Vol. 18, 726-731, 2010.
doi:10.1364/OE.18.000726        Google Scholar

31. Cai, Y., Y. Chen, H. T. Eyyuboglu, and Y. Baykal, "Scintillation index of elliptical Gaussian beam in turbulent atmosphere," Opt. Lett., Vol. 32, 2405-2407, 2007.
doi:10.1364/OL.32.002405        Google Scholar

32. Voelz, D. G. and X. Xiao, "Metric for optimizing spatially partially coherent beams for propagation through turbulence," Opt. Eng., Vol. 48, 036001, 2009.
doi:10.1117/1.3090435        Google Scholar

33. Gu, Y. and G. Gbur, "Measurement of atmospheric turbulences strength by vortex beam," Opt. Commun., Vol. 283, 1209-1212, 2010.
doi:10.1016/j.optcom.2009.11.049        Google Scholar

34. Grynberg, G., A. Maitre, and A. Petrossian, "Flowerlike patterns generated by a laser beam transmitted through a rubidium cell with single feedback mirror," Phys. Rev. Lett., Vol. 72, 2379-2382, 1994.
doi:10.1103/PhysRevLett.72.2379        Google Scholar

35. Zhang, B. and D. Zhao, "Focusing properties of Fresnel zone plates with spiral phase ," Opt. Express, Vol. 18, 12818-12823, 2010.
doi:10.1364/OE.18.012818        Google Scholar

36. Golub, I. and T. Mirtchev, "Absorption-free beam generated by a phase-engineered optical element," Opt. Lett., Vol. 34, 1528-1530, 2009.
doi:10.1364/OL.34.001528        Google Scholar

37. Pu, J., S. Nemoto, and X. Liu, "Beam shaping of focused partially coherent beams by use of the spatial coherence effect," Appl. Opt., Vol. 43, 5281-5286, 2004.
doi:10.1364/AO.43.005281        Google Scholar

38. Lindfors, K., T. Setälä, and M. Kaivola, "Degree of polarization in tightly focused optical fields," J. Opt. Soc. Am. A, Vol. 22, 561-568, 2005.
doi:10.1364/JOSAA.22.000561        Google Scholar

39. Zhan, Q. and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express, Vol. 10, 324-331, 2002.        Google Scholar

40. Sabatke, D., A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, "Snapshot imaging spectropolarimeter," Opt. Eng., Vol. 41, 1048-1054, 2002.
doi:10.1117/1.1467934        Google Scholar

41. Ganic, D., X. Gan, and M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express, Vol. 11, 2747-2752, 2003.
doi:10.1364/OE.11.002747        Google Scholar

42. Wada, A., Y. Miyamoto, T. Ohtani, N. Nishihara, and M. Takeda, "Effects of astigmatic aberration in holographic generation of Laguerre-Gaussian beam," Proc. of SPIE, Vol. 5137, 177-180, 2003.
doi:10.1117/12.517961        Google Scholar

43. Berre, M. L., A. S. Patrascu, E. Ressayre, and A. Tallet, "Daisy patterns in the passive ring cavity with diffusion effects," Opt. Commun., Vol. 123, 810-824, 1996.
doi:10.1016/0030-4018(95)00472-6        Google Scholar

44. Firth, W. J., A. J. Scroggie, and G. S. Mcdonald, "Hexagonal patterns in optical bistability," Phys. Rev. A, Vol. 46, 3609-3612, 1992.
doi:10.1103/PhysRevA.46.R3609        Google Scholar

45. Cai, Y. and Q. Lin, "Four-beamlets laser array and its propagation," Opt. Laser. Technol., Vol. 37, 483-489, 2005.
doi:10.1016/j.optlastec.2004.07.003        Google Scholar

46. Duan, K. and B. Lu, "Four-petal Gaussian beams and their propagation," Opt. Commun., Vol. 261, 327-331, 2006.
doi:10.1016/j.optcom.2005.12.037        Google Scholar

47. Gao, Z. and B. Lu, "Vectorial nonparaxial four-petal Gaussian beams and their propagation in free space," Chin. Phys. Lett., Vol. 23, 2070-2073, 2006.        Google Scholar

48. Chu, X., Z. Liu, and Y. Wu, "Propagation of four-petal Gaussian beams in turbulent atmosphere," Chin. Phys. Lett., Vol. 25, 485-488, 2008.        Google Scholar

49. Zhou, G. and Y. Fan, ".M2 factor of four-petal Gaussian beam," Chin. Phys. B, Vol. 17, 3708-3712, 2008.        Google Scholar

50. Tang, B., Y. Jin, M. Jiang, and X. Jiang, "Diffraction properties of four-petal Gaussian beams in uniaxially anisotropic crystal," Chin. Opt. Lett., Vol. 6, 779-781, 2008.
doi:10.3788/COL20080610.0779        Google Scholar

51. Tang, B., "Propagation properties of four-petal Gaussian beams in apertured factional Fourier transforming systems," J. Mod. Opt., Vol. 56, 1860-1867, 2009.
doi:10.1080/09500340903377725        Google Scholar

52. Li, J., Y. Chen, Y. Xin, M. Zhou, and S. Xu, "Vectorial structural characteristics of four-petal Gaussian beams in the far field," Eur. Phys. J. Appl. Phys., Vol. 50, 30702, 2010.
doi:10.1051/epjap/2010051        Google Scholar

53. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge U. Press, 1995.

54. Wang, F., Y. Cai, H. T. Eyyuboglu, and Y. Baykal, "Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere," Progress In Electromagnetics Research, Vol. 103, 33-56, 2010.
doi:10.2528/PIER10021901        Google Scholar

55. Li, J., Y. Chen, Y. Xin, M. Zhou, and S. Xu, "Diffraction properties of partially coherent vectorial four-petal Gaussian beams," Opt. Commun., Vol. 283, 3105-3114, 2010.
doi:10.1016/j.optcom.2010.04.009        Google Scholar

56. Carter, W. H., "Spot size and divergence for Hermite-Gaussian beams of any order," Appl. Opt., Vol. 19, 1027-1029, 1980.
doi:10.1364/AO.19.001027        Google Scholar

57. Gbur, G. and E. Wolf, "The Rayleigh range of partially coherent beams," Opt. Commun., Vol. 199, 295-304, 2001.
doi:10.1016/S0030-4018(01)01467-5        Google Scholar

58. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.

59. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table, U. S. Department of Commerce, 1970.

60. Bracewell, R. N., The Fourier Transform and Its Applications, 2nd Ed., McGraw-Hill, 1986.