Department of Optical Engineering
Nanjing University of Science and Technology
China
HomepageDepartment of Optical Engineering
Nanjing University of Science and Technology
China
HomepageDepartment of Optical Engineering
Nanjing University of Science and Technology
China
HomepageDepartment of Optical Engineering
Nanjing University of Science and Technology
China
HomepageDepartment of Optical Engineering
Nanjing University of Science and Technology
China
HomepageDepartment of Optical Engineering
Nanjing University of Science and Technology
China
HomepageDepartment of Optical Engineering
Nanjing University of Science and Technology
China
HomepageDepartment of Optical Engineering
Nanjing University of Science and Technology
China
Homepage1. Andrews, L. C. and R. L. Phillips, Laser Beam Propagation Through Random Media, SPIE Press, 1998.
2. Gbur, G. and E. Wolf, "Spreading of partially coherent beams in random media," J. Opt. Soc. Am. A, Vol. 19, 1592-1598, 2002.
doi:10.1364/JOSAA.19.001592 Google Scholar
3. Gbur, G. and R. K. Tyson, "Vortex beam propagation through atmospheric turbulence and topological charge conservation," J. Opt. Soc. Am. A, Vol. 25, 225-230, 2008.
doi:10.1364/JOSAA.25.000225 Google Scholar
4. Azana, J., "Lensless imaging of an arbitrary object," Opt. Lett., Vol. 28, 501-503, 2003.
doi:10.1364/OL.28.000501 Google Scholar
5. Ferri, F., D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light ," Phys. Rev. Lett., Vol. 94, 183602, 2005.
doi:10.1103/PhysRevLett.94.183602 Google Scholar
6. Cheng, J., "Ghost imaging through turbulent atmosphere," Opt. Express, Vol. 17, 7916-7921, 2009.
doi:10.1364/OE.17.007916 Google Scholar
7. Ricklin, J. C. and F. M. Davidson, "Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communications," J. Opt. Soc. Am. A, Vol. 19, 1794-1802, 2002.
doi:10.1364/JOSAA.19.001794 Google Scholar
8. Chen, B., Z. Chen, and J. Pu, "Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere," Opt. Laser. Technol., Vol. 40, 820-827, 2008.
doi:10.1016/j.optlastec.2007.11.011 Google Scholar
9. Qu, J., Y. Zhong, Z. Cui, and Y. Cai, "Elegant Laguerre-Gaussian beam in a turbulent atmosphere," Opt. Commun., Vol. 283, 2772-2781, 2010.
doi:10.1016/j.optcom.2010.03.022 Google Scholar
10. Eyyuboglu, H. T., Y. Baykal, and E. Sermutlu, "Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere," Opt. Commun., Vol. 265, 399-405, 2006.
doi:10.1016/j.optcom.2006.03.071 Google Scholar
11. Ji, X., E. Zhang, and B. Lü, "Superimposed partially coherent beams propagating through atmospheric turbulence," J. Opt. Soc. Am. B, Vol. 25, 825-833, 2008.
doi:10.1364/JOSAB.25.000825 Google Scholar
12. Manez, R. J. and J. C. Gutiérrez, "Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere," Opt. Express, Vol. 15, 16328-16341, 2007.
doi:10.1364/OE.15.016328 Google Scholar
13. Razzaghi, D., F. Hajiesmaeilbaigi, and M. Alavinejad, "Turbulence induced changes in spectrum and time shape of fully coherent Gaussian pulses propagating in atmosphere," Opt. Commun., Vol. 283, 2318-2323, 2010.
doi:10.1016/j.optcom.2010.01.048 Google Scholar
14. Eyyuboglu, H. T., Y. Baykal, and X. Ji, "Radius of curvature variations for annular, dark hollow and flat topped beams in turbulence," Appl. Phys. B, Vol. 99, No. 4, 801-807, 2010.
doi:10.1007/s00340-010-3955-4 Google Scholar
15. Shchepakina, E. and O. Korotkova, "Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence," Opt. Express, Vol. 18, 10650-10658, 2010.
doi:10.1364/OE.18.010650 Google Scholar
16. Chen, W., J. W. Haus, and Q. Zhan, "Propagation of scalar and vector vortex beams through turbulent atmosphere," Proc. of SPIE, Vol. 7200, 720004, 2009.
doi:10.1117/12.809138 Google Scholar
17. Wang, F., Y. Cai, and O. Korotkova, "Partially coherent standard and elegant Laguerre-Gaussian beams of all orders," Opt. Express, Vol. 17, 22366-22379, 2009.
doi:10.1364/OE.17.022366 Google Scholar
18. Shirai, T., A. Dogariu, and E. Wolf, "Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence," Opt. Lett., Vol. 28, 610-612, 2003.
doi:10.1364/OL.28.000610 Google Scholar
19. Korotkova, O., M. Salem, and E. Wolf, "The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence," Opt. Commun., Vol. 233, 225-230, 2004.
doi:10.1016/j.optcom.2004.01.005 Google Scholar
20. Korotkova, O., "Control of the intensity fluctuations of random electromagnetic beam on propagation in weak turbulent atmosphere," Proc. of SPIE, Vol. 6105, 61050, 2006.
doi:10.1117/12.644254 Google Scholar
21. Cai, Y. and S. He, "Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in turbulent atmosphere," Appl. Phys. Lett., Vol. 89, 041117, 2006.
doi:10.1063/1.2236463 Google Scholar
22. Arpali, C., C. Yazicioglu, H. T. Eyyuboglu, S. A. Arpali, and Y. Baykal, "Simulator for general-type beam propagation in turbulent atmosphere," Opt. Express, Vol. 14, 8918-8928, 2006.
doi:10.1364/OE.14.008918 Google Scholar
23. Eyyuboglu, H. T., "Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere," J. Opt. Soc. Am. A, Vol. 22, 1527-1535, 2005.
doi:10.1364/JOSAA.22.001527 Google Scholar
24. Ji, X., X. Chen, and B. Lu, "Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 25, 21-28, 2008.
doi:10.1364/JOSAA.25.000021 Google Scholar
25. Yuan, Y., Y. Cai, J. Qu, H. T. Eyyuboglu, and Y. Baykal, "Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent atmosphere," Opt. Express, Vol. 17, 11130-11139, 2009.
doi:10.1364/OE.17.011130 Google Scholar
26. Li, J., Y. Chen, Q. Zhao, and M. Zhou, "Effect of astigmatism on states of polarization of aberrant stochastic electromagnetic beams in turbulent atmosphere," J. Opt. Soc. Am. A, Vol. 26, 2121-2127, 2009.
doi:10.1364/JOSAA.26.002121 Google Scholar
27. Chu, X., Z. Liu, and Y. Wu, "Propagation of a general multi-Gaussian beam in turbulent atmosphere in a slant path," J. Opt. Soc. Am. A, Vol. 25, 74-79, 2008.
doi:10.1364/JOSAA.25.000074 Google Scholar
28. Zhou, P., Z. Liu, X. Xu, and X. Chu, "Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere," Opt. & Laser. Eng., Vol. 47, 1254-1258, 2009.
doi:10.1016/j.optlaseng.2009.05.008 Google Scholar
29. Dan, Y. and B. Zhang, "Second moments of partially coherent beams in atmospheric turbulence," Opt. Lett., Vol. 34, 563-565, 2009.
doi:10.1364/OL.34.000563 Google Scholar
30. Zhou, G. and X. Chu, "Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere," Opt. Express, Vol. 18, 726-731, 2010.
doi:10.1364/OE.18.000726 Google Scholar
31. Cai, Y., Y. Chen, H. T. Eyyuboglu, and Y. Baykal, "Scintillation index of elliptical Gaussian beam in turbulent atmosphere," Opt. Lett., Vol. 32, 2405-2407, 2007.
doi:10.1364/OL.32.002405 Google Scholar
32. Voelz, D. G. and X. Xiao, "Metric for optimizing spatially partially coherent beams for propagation through turbulence," Opt. Eng., Vol. 48, 036001, 2009.
doi:10.1117/1.3090435 Google Scholar
33. Gu, Y. and G. Gbur, "Measurement of atmospheric turbulences strength by vortex beam," Opt. Commun., Vol. 283, 1209-1212, 2010.
doi:10.1016/j.optcom.2009.11.049 Google Scholar
34. Grynberg, G., A. Maitre, and A. Petrossian, "Flowerlike patterns generated by a laser beam transmitted through a rubidium cell with single feedback mirror," Phys. Rev. Lett., Vol. 72, 2379-2382, 1994.
doi:10.1103/PhysRevLett.72.2379 Google Scholar
35. Zhang, B. and D. Zhao, "Focusing properties of Fresnel zone plates with spiral phase ," Opt. Express, Vol. 18, 12818-12823, 2010.
doi:10.1364/OE.18.012818 Google Scholar
36. Golub, I. and T. Mirtchev, "Absorption-free beam generated by a phase-engineered optical element," Opt. Lett., Vol. 34, 1528-1530, 2009.
doi:10.1364/OL.34.001528 Google Scholar
37. Pu, J., S. Nemoto, and X. Liu, "Beam shaping of focused partially coherent beams by use of the spatial coherence effect," Appl. Opt., Vol. 43, 5281-5286, 2004.
doi:10.1364/AO.43.005281 Google Scholar
38. Lindfors, K., T. Setälä, and M. Kaivola, "Degree of polarization in tightly focused optical fields," J. Opt. Soc. Am. A, Vol. 22, 561-568, 2005.
doi:10.1364/JOSAA.22.000561 Google Scholar
39. Zhan, Q. and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express, Vol. 10, 324-331, 2002. Google Scholar
40. Sabatke, D., A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, "Snapshot imaging spectropolarimeter," Opt. Eng., Vol. 41, 1048-1054, 2002.
doi:10.1117/1.1467934 Google Scholar
41. Ganic, D., X. Gan, and M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express, Vol. 11, 2747-2752, 2003.
doi:10.1364/OE.11.002747 Google Scholar
42. Wada, A., Y. Miyamoto, T. Ohtani, N. Nishihara, and M. Takeda, "Effects of astigmatic aberration in holographic generation of Laguerre-Gaussian beam," Proc. of SPIE, Vol. 5137, 177-180, 2003.
doi:10.1117/12.517961 Google Scholar
43. Berre, M. L., A. S. Patrascu, E. Ressayre, and A. Tallet, "Daisy patterns in the passive ring cavity with diffusion effects," Opt. Commun., Vol. 123, 810-824, 1996.
doi:10.1016/0030-4018(95)00472-6 Google Scholar
44. Firth, W. J., A. J. Scroggie, and G. S. Mcdonald, "Hexagonal patterns in optical bistability," Phys. Rev. A, Vol. 46, 3609-3612, 1992.
doi:10.1103/PhysRevA.46.R3609 Google Scholar
45. Cai, Y. and Q. Lin, "Four-beamlets laser array and its propagation," Opt. Laser. Technol., Vol. 37, 483-489, 2005.
doi:10.1016/j.optlastec.2004.07.003 Google Scholar
46. Duan, K. and B. Lu, "Four-petal Gaussian beams and their propagation," Opt. Commun., Vol. 261, 327-331, 2006.
doi:10.1016/j.optcom.2005.12.037 Google Scholar
47. Gao, Z. and B. Lu, "Vectorial nonparaxial four-petal Gaussian beams and their propagation in free space," Chin. Phys. Lett., Vol. 23, 2070-2073, 2006. Google Scholar
48. Chu, X., Z. Liu, and Y. Wu, "Propagation of four-petal Gaussian beams in turbulent atmosphere," Chin. Phys. Lett., Vol. 25, 485-488, 2008. Google Scholar
49. Zhou, G. and Y. Fan, ".M2 factor of four-petal Gaussian beam," Chin. Phys. B, Vol. 17, 3708-3712, 2008. Google Scholar
50. Tang, B., Y. Jin, M. Jiang, and X. Jiang, "Diffraction properties of four-petal Gaussian beams in uniaxially anisotropic crystal," Chin. Opt. Lett., Vol. 6, 779-781, 2008.
doi:10.3788/COL20080610.0779 Google Scholar
51. Tang, B., "Propagation properties of four-petal Gaussian beams in apertured factional Fourier transforming systems," J. Mod. Opt., Vol. 56, 1860-1867, 2009.
doi:10.1080/09500340903377725 Google Scholar
52. Li, J., Y. Chen, Y. Xin, M. Zhou, and S. Xu, "Vectorial structural characteristics of four-petal Gaussian beams in the far field," Eur. Phys. J. Appl. Phys., Vol. 50, 30702, 2010.
doi:10.1051/epjap/2010051 Google Scholar
53. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge U. Press, 1995.
54. Wang, F., Y. Cai, H. T. Eyyuboglu, and Y. Baykal, "Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere," Progress In Electromagnetics Research, Vol. 103, 33-56, 2010.
doi:10.2528/PIER10021901 Google Scholar
55. Li, J., Y. Chen, Y. Xin, M. Zhou, and S. Xu, "Diffraction properties of partially coherent vectorial four-petal Gaussian beams," Opt. Commun., Vol. 283, 3105-3114, 2010.
doi:10.1016/j.optcom.2010.04.009 Google Scholar
56. Carter, W. H., "Spot size and divergence for Hermite-Gaussian beams of any order," Appl. Opt., Vol. 19, 1027-1029, 1980.
doi:10.1364/AO.19.001027 Google Scholar
57. Gbur, G. and E. Wolf, "The Rayleigh range of partially coherent beams," Opt. Commun., Vol. 199, 295-304, 2001.
doi:10.1016/S0030-4018(01)01467-5 Google Scholar
58. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.
59. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table, U. S. Department of Commerce, 1970.
60. Bracewell, R. N., The Fourier Transform and Its Applications, 2nd Ed., McGraw-Hill, 1986.