1. Van Loock, W., "Elementary effects in humans exposed to electromagnetic fields and radiation," 5th Asia-Pacific Conf. on Environmental Electromagnetics (CEEM), 221-224, Belgium, 2009.
2. Neutra, R. R., V. DelPizzo, and G. M. Lee, "An evaluation of the possible risks from electric and magnetic fields (EMFs) from power lines, internal wiring, electrical occupations and appliances," California EMF Program, Oakland, California, USA, Jun. 2002.
3. Florea, G. A., A. Dinca, and A. Gal, "An original approach to the biological impact of the low frequency electromagnetic fields and proofed means of mitigation," IEEE Bucharest Power Tech. Conf., 1-8, Romania, 2009.
4. IARC, , Static and extremely low-frequency (ELF) electric and magnetic fields: IARC monographs on the evaluation of carcinographic risks to humans, Vol. 80 International Agency for Research on Cancer, Lyon, France, 2002.
5. Rao, S., A. Sathyanarayanan, and U. K. Nandwani, "EMI problems for medical devices," IEEE Proceedings of the International Conference on Electromagnetic Interference and Compatibility, 21-24, India, Dec. 1999.
6. Shwehdi, M. H., "A practical study of an electromagnetic interference (EMI) problem from saudi arabia," 2004 Large Engineering Systems Conference on Power Engineering, 162-169, Canada, Jul. 2004.
7. ICNIRP (The international commission on non-ionizing radiation protection) "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)," Health Physics, Vol. 74, No. 4, 494-522, Apr. 1998.
8. Hossam-Eldin, A., K. Youssef, and H. Karawia, "Measurements and evaluation of adverse health effects of electromagnetic fields from low voltage equipments," 12th International Middle-east Power System Conf. (MEPCON), 436-440, Egypt, 2008.
9. Swanson, J., EMF exposure standards applicable in Europe and elsewhere, Environment & Society Working Group, Union of the Electricity Industry --- EURELECTRIC, Belgium, May 2003.
10. Wassef, K., V. V. Varadan, and V. K. Varadan, "Magnetic field shielding concepts for power transmission lines," IEEE Transactions on Magnetics, Vol. 34, No. 3, 649-654, May 1998.
doi:10.1109/20.668061
11. Celozzi, S. and F. Garzia, "Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization," IEE Proceedings --- Science, Measurement and Technology, Vol. 151, No. 1, 2-7, Jan. 2004.
doi:10.1049/ip-smt:20040002
12. Canova, A. and L. Giaccone, "Magnetic field mitigation of power cable by high magnetic coupling passive loop," 20th International Conference and Exhibition on Electricity Distribution, 1-4, Prague, Czech Republic, Jun. 009.
13. Nourai, A., A. Keri, and C. Shih, "Shield wire loss reduction for double circuit transmission lines," IEEE Trans. on Power Delivery, Vol. 3, No. 4, 1854-1864, 1988.
doi:10.1109/61.193993
14. Kalyuzhny, A. and G. Kushnir, "Analysis of current unbalance in transmission systems with short lines," IEEE Transactions on Power Delivery, Vol. 22, No. 2, 1040-1048, 2007.
doi:10.1109/TPWRD.2006.883011
15. Electric Power Research Institute EPRI Transmission Line Reference Book: 115--345-kV Compact Line Design, Electric Power Research Institute, 2008.
16. Al Salameh, M. S. H., I. M. Nejdawi, and O. A. Alani, "Using the nonlinear particle swarm optimization (PSO) algorithm to reduce the magnetic fields from overhead high voltage transmission lines," IJRRAS: International Journal of Research and Reviews in Applied Sciences, Vol. 4, No. 1, Jul. 010.
17. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proceedings of IEEE International Conference on Neural Networks, 1942-1948, Piscataway, NJ, 1995.
18. Pedersen, M. E. H. and A. J. Chipperfield, "Simplifying particle swarm optimization," Applied Soft Computing, Vol. 10, No. 2, 618-628, 2010.
doi:10.1016/j.asoc.2009.08.029
19. Premalatha, K. and A. Natarajan, "Hybrid PSO and GA for Global Maximization," Int. J. Open Problems Compt. Math. International Center for Scientific Research and Studies, Vol. 2, No. 4, Dec. 2009.
20. Moradi, A. M. and A. B. Dariane, "Particle swarm optimization: Application to reservoir operation problems," IEEE Int. Advance Computing Conf. (IACC 2009), 1048-1051, Patiala, 2009.
21. Garrido, C. and A. Otero, "Low frequency magnetic fields from electrical appliances and power lines," IEEE Transactions on Power Delivery, Vol. 18, No. 4, 1310-1319, Oct. 2003.
doi:10.1109/TPWRD.2003.817744
22. Olsen, R., "Field computation models: A: Calculation of ELF electric and magnetic fields air," Field Computation Models, Available from URL ftp://ftp.emf-data.org/pub/emf-data/symposium98/topic-06a-synopsis.pdf.
23. Winterfeldt, D., "California department of health services and the public health institute, power grid and land use policy analysis 2001, final report,", Dec. 2009, Available from URL http://www.ehib.org/emf/pdf/Chapter09-ValueofInformation.pdf.
24. United States General Accounting Office, , Electromagnetic fields: Federal efforts to determine health effects are behind, GAO Resources, Community, and Economic Development Division, Washington, 1994.
25. Luwen, X., H. Xingzhe, L. Yongming, and L. Changsheng, "Study on shielding optimization for power-frequency electric field under over head transmission line," Symposium on Radio Interference and Electromagnetic Compatibility of Substation ('08 EMI), Zhuhai, China, Nov. 2008.
26. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969
27. Luo, J. X., D. Wu, Z. Ma, T. Chen, and A. Li, "Using PSO and GA to optimize schedule reliability in container terminal," International Conference on Information Engineering and Computer Science (ICIECS), 1-4, Wuhan, China, Dec. 19--20, 2009.
28. Tian, D. P. and N. Q. Li, "Fuzzy particle swarm optimization algorithm," International Joint Conference on Artificial Intelligence (JCAI '09), 263-267, Hainan Island, China, Apr. 25--26, 2009.
29. Saadat, H., Power System Analysis, 2nd Ed., McGraw Hill, 2002.
30. Mazzanti, G., "Current phase-shift effects in the calculation of magnetic fields generated by double-circuit overhead transmission lines," IEEE Power Engineering Society General Meeting, Vol. 1, 413-418, New York, USA, Jun. 2004.
31. Bakhashwain, J. M., M. H. Shwehdi, U. M. Johar, and A. A. AL-Naim, "Magnetic fields measurement and evaluation of EHV transmission lines in Saudi Arabia," Proceedings of the International Conference on Non-ionizing Radiation at UNITEN (ICNIR 2003), Electromagnetic Fields and Our Heaealth, Malaysia, Oct. 20--22, 2003.